Graham Pearson, FRS & FRSC
Contact
Professor, Faculty of Science - Earth & Atmospheric Sciences
- gdpearso@ualberta.ca
- Phone
- (780) 492-4156
- Address
-
1-19A Earth Sciences Building
11223 Saskatchewan Drive NWEdmonton ABT6G 2E3
Overview
Research
Research area
- Mantle evolution, geochemistry and petrology
- Radiogenic isotope geochemistry
- Trace element geochemistry
- Age and origin of diamonds
- Tracing diamonds using elemental and isotopic methods
- Origin of the continental lithosphere, especially cratons
- PGE geochemistry, Re-Os and Pt-Os isotope geochemistry
- Origins of alkaline/low melt fraction rocks
- Application of ICPMS to molecular pharmacology – metallodrugs
Research interest
Graham Pearson is a mantle geochemist whose research interests focus on the origin and evolution of the continental lithospheric mantle and its diamond cargo. The current region of interest is Arctic Canada and its diamond-bearing roots. Through the study of mantle xenoliths I try to evaluate how cratons are formed and how they have evolved. My research group has developed new methods for dating diamonds and analyzing ultra-low level trace element impurities in the diamond lattice. Current efforts are focused on using such data to try to distinguish a diamond’s place of origin, with application to supporting the Kimberley Process. I apply radiogenic isotopes (specialising in the Re-Os and Pt-Os systems) to the geochronology and tracing of mantle rocks and mantle-derived magmas such as kimberlites. I use the systematics of platinum group element geochemistry to investigate a wide range of phenomena ranging from lunar evolution to the interaction between DNA and metallodrugs.
Research opportunity
I am interested in attracting graduate students and post-doctoral researchers to work in the following areas:
- Constraining the thermal history of cratonic lithosphere through conventional and new approaches to thermobarometry and thermal modelling.
- Petrology and geochronology of the lithospheric mantle beneath Arctic Canada.
- The origin of Slave craton diamonds.
- Use of novel laser-sampling methods to trace the origin of diamonds.
- Statistical methods for differentiating diamond populations.
- Laser ablation analytical methods
Courses
EAS 333 - Advanced Geology Field School
Advanced field practice in geology. Details and areas of study may vary from year to year. Consult the department about current offerings and timing. Topics vary, and will include the study and mapping of deformed sedimentary, igneous, and metamorphic rocks, mineral deposits and their associated host rocks and alteration, and structures in the field. May be taken more than once for credit provided no topic is repeated. Co-prerequisites: EAS 233, 234 or 237, 331 and 332. Requires payment of additional student instructional support fees. Refer to the Tuition and Fees page in the University Regulations section of the Calendar. [Faculty of Science]
EAS 539 - Isotope Geology: Radioactive Systems
Theory and systematics of radioactive decay, geochronology and isotopic tracing U-Pb, Rb-Sr, Sm-Nd, Re-Os and other radioisotope systems. Applications of natural radioactive isotope variation to a variety of problems spanning low and high temperature geologic processes. [Faculty of Science]
EAS 547 - Methods and Instrumentation in Geology
Processing and analysis of geochemical data, and selected analytical techniques such as: inductively-coupled-plasma mass-spectrometry (ICP-MS), secondary-ion mass-spectrometry (SIMS), and electron probe microanalysis (EPMA), or other geochemical instrumental methods as determined by the instructor. Prerequisites: An undergraduate or graduate degree in the Earth Sciences; or consent of the instructor. [Faculty of Science]