George Owttrim, PhD

Professor, Faculty of Science - Biological Sciences


Professor, Faculty of Science - Biological Sciences
(780) 492-1803
M-524 Bio Science - Microbiology Wing
11355 - Saskatchewan Drive
Edmonton AB
T6G 2E9



My lab is investigating the mechanisms by which photosynthetic organisms sense and respond to environmental change, using cyanobacterial RNA helicases as our model system. Expression of two distinct RNA helicases, CrhC and CrhR, whose expression is regulated by environmental stresses including light and temperature that induce alterations in the redox status of the electron transport chain. Since RNA helicases unwind dsRNA (inactive) to produce ssRNA that is functional, they have the potential to regulate gene expression, thereby linking environmentally induced changes in gene transcription with control at the post-transcriptional level. The research involves an integrated approach using molecular, biochemical, genetic and physiological techniques.

Our current research focuses on four primary issues:

Project 1. Environmental change and regulation of gene expression. We are interested in determining the players involved in sensing, signal transduction and expression of crhR in response to environmental conditions that alter the redox status of the electron transport chain. We are utilizing our knowledge of environmental gene regulation to control expression of proteins required for biotechnological purposes, for example biofuel production.

Project 2. Omics analysis of RNA helicase interacting partners. We are attempting to identify RNA and protein cofactors interacting with the RNA helicases using co-IP/affinity purification combined with RNA sequencing and mass spectrometric techniques. This analysis will allow insights into the physiological role performed by RNA helicases.

Project 3. Biochemistry of RNA helicase alteration of RNA secondary structure. CrhC and CrhR alter different RNA secondary structures. We are interested in determining how the helicases interact with specific RNAs and the mechanism by which the secondary structure alteration is accomplished.

Project 4. In conjunction with the Konhauser lab (EAS, UofA) we are interested in growing cyanobacteria under conditions that existed on the early earth, studying the ability to grow under these adverse conditions and also elucidating how cyanobacteria contributed to changing the earths environment. For example participation in the Great Oxidation Event (GOE) and the precipitation of minerals from the oceans.


BIOL 391 - Techniques in Molecular Biology and Bioinformatics

A laboratory course introducing students to techniques in gene manipulation, protein expression and bioinformatics by following a gene through a thematic series of molecular manipulations. Restricted to Honors and Specialization students in Biological Sciences and consent of instructor. Prerequisites: BIOL 207 and BIOCH 200. Not to be taken by students currently enrolled in GENET 420 or with credit in GENET 420. Credit can be obtained for only one of BIOL 391, IMIN 391 or MMI 391.

Winter Term 2022
GENET 390 - Gene Manipulation

Examination of fundamental techniques employed in molecular biological research relevant to both prokaryotic and eukaryotic systems. Topics will provide the theoretical basis appropriate for molecular research in a diverse range of fields including genetics, microbiology, cell biology, biotechnology, evolution and population biology. Prerequisite: BIOL 207; BIOCH 200 or 205 or BIOCH 220; GENET 270 recommended.

Fall Term 2021

Browse more courses taught by George Owttrim