Hasan Uludag, PhD

Professor, Faculty of Engineering - Chemical and Materials Engineering Dept


Professor, Faculty of Engineering - Chemical and Materials Engineering Dept
(780) 492-0344
13-372 Donadeo Innovation Centre For Engineering
9211-116 St
Edmonton AB
T6G 2H5


Area of Study / Keywords

Biomedical Engineering Nanomaterials and Nanofabrication


Dr. Hasan Uludağ has been with the University of Alberta since 1997, currently based at the Department of Chemical & Materials Engineering. He holds joint appoints at the Faculty of Medicine & Dentistry and Faculty of Pharmacy & Pharmaceutical Sciences. Dr. Uludağ is directing interdisciplinary research programs on experimental therapeutics, specifically focusing of designing functional biomaterials to realize the potential of new, unconventional therapeutic agents. His research activity is conducted in the context of bone regeneration and anti-cancer therapies. Dr. Uludağ is actively involved in various biomaterials societies around the World and is an elected Fellow of the International Union of Society of Biomaterials Science and Engineering (IUS-BSE). Besides acting as the lead editor for Frontiers in Biomaterials, he is serving on the editorial board of 6 international journals. Dr. Uludağ published >160 peer-reviewed journal articles. Dr. Uludağ obtained dual B.Sc. degrees in Biomedical Engineering and Biology from Brown University (Providence, RI) in 1989, specializing in biomedical engineering with a strong emphasis in biological sciences. He then completed his Ph.D. degree in 1993 at the Department of Chemical Engineering & Applied Chemistry at the University of Toronto, where he developed a strong expertise in polymeric biomaterials. He spent four years in an industrial setting (Genetics Institute Inc.; Boston, MA), where he contributed to development of a tissue engineered bone-inducing BMP device for clinical use. 


Research Program 1: Cancer Therapy with siRNAs. Cancer arises from uncontrolled cell proliferation due to aberrant expression of certain proteins, resulting in loss of control over the cellular physiology. A permanent solution to cancer is to target those proteins with aberrant expression and silence (eradicate) them. The newly discovered silencer RNAs (siRNAs) can be designed to target any protein at will. Their delivery into the cells, however, is problematic. The highly charged siRNAs cannot cross cell membrane and it gets quickly degraded in the body. Our goal is to design 'nano'-engineered vesicles, based on architecturally-controlled polymers, to facilitate cellular uptake of siRNA (picture). We are developing amphiphilic polymers composed of cationic and lipophilic groups, since these features provide an optimal balance between packaging of siRNA into nano-vesicles and cellular penetration. Sub-projects in this area include materials chemistry to prepare the biomaterials, pharmaceutical studies to investigate siRNA delivery, and development of anti-cancer models for therapy.

Research Program 2: Gene Delivery for Bone Regeneration. Extensive efforts by academic and industrial groups are yielding new proteins to enable bone repair. To develop next-generation therapeutic agents for bone repair, we want to rely on the genes of these stimulatory factors for bone regeneration, rather than the proteins artificially produced outside the body. The critical challenge is to enable robust gene expression at the site of repair, so that locally produced proteins can stimulate bone healing. We are creating new biomaterials for this end, whose goal to package the genes into supramolecular assemblies and present the genes to cells in the body. Sub-projects in this theme include preparation of polymeric biomaterials, design of gene-expression vectors, and nanoparticle engineering for gene expression in animal models.

Keywords: Biomaterials, drug delivery, gene therapy, tissue engineering, anti-cancer drugs