B.Sc., Queen's University
Ph.D., University of Alberta
Our research program focuses on the development and application of mass spectrometry-based techniques, implemented with a 4.7 tesla Fourier-transform ion cyclotron resonance mass spectrometer (FT-ICR MS) equipped with a nanoflow electrospray (nanoES) source, to study the composition, topology and physicochemical properties of protein complexes in the gas and condensed phases. One component of our research program involves the use of time-resolved ion-molecule and ion-dissociation reactions to study the structure and reactivity of gaseous protein assemblies and protein-ligand complexes. These studies are of considerable fundamental importance, providing insight into the intrinsic properties of proteins and protein complexes in the absence of solvent, and are critical to the evolution of mass spectrometry as a powerful tool for proteomics. A second area of research deals with the development of novel strategies to map protein interaction sites and quantify association free energies in the aqueous phase. Some of the specific research projects in our laboratory are described below.
A continuation of CHEM 371 in which the physical properties of chemical systems and the dynamics and energetics of chemical processes are discussed. Topics include: colligative properties; electrochemical cells and ion activities, implications for ionic equilibria; kinetic theory and transport properties of gases and liquids; surfaces and colloid chemistry; reaction dynamics, detailed mechanisms of chemical reactions, catalysis. The emphasis will be on the development of principles of physical chemistry and their application to properties and processes of interest to chemists, biochemists, and engineers. Note: This course may not be taken for credit if credit has already been received in CHEM 273 or 275. Prerequisite: CHEM 371 or 271.
Winter Term 2021