Katharine Magor

Professor, Faculty of Science - Biological Sciences

Contact

Professor, Faculty of Science - Biological Sciences
Email
kathy.magor@ualberta.ca
Phone
(780) 492-5498
Address
CW-326 Bio Science - Centre Wing
11355 - Saskatchewan Drive
EdmontonAB
T6G 2E9

Overview

Research

Ducks are the primary host of influenza virus. They can be infected with all strains of influenza, and most cause them little harm. We are interested in both the host-pathogen interactions that permit re-infection, and understanding how the duck successfully clears the virus. Lessons from ducks may identify new strategies to prime our immune defenses against deadly influenza.

Recent and on-going projects.

Ducks, but not chickens, have a functional influenza sensor RIG-I that contributes to the innate immune response to influenza. We showed by bioinformatics and Southern blotting that chickens do not have the RIG-I gene. We can reconstitute chicken cells using duck RIG-I, which is functional in chicken embryonic fibroblast DF-1 cells (a spontaneously immortalized chicken cell line) and confers detection of RIG-I ligand (Barber et al., 2010). This provides a simple explanation for why ducks are resistant to strains of flu that would kill chickens in a few days. 

Our goal is to understand how RIG-I is regulated in an influenza infection in ducks. We examined regulation by ubquitination, and showed that ubiquitination is not needed for activation of duck RIG-I (Domingo Miranzo Navarro, PDF PLOS One, 2014). We expect influenza can interfere in the pathway in many ways. Projects underway in the lab involve examining host-pathogen interactions at the protein level (Danyel Evseev, MSc candidate and David Tetrault, MSc candidate.

Genes expressed in antiviral defenses against highly pathogenic avian influenza.  In an international collaboration, we will compare genes expressed in response to highly pathogenic avian influenza versus low pathogenic strains, and use these to complete the duck genome sequence (Huang et al., 2013). We also characterized the genes upregulated in chicken cells with and without the duck RIG-I, as a way to see which genes are under control of the RIG-I pathway (Barber et al., 2013). Using differential subtractive screening we identified genes upregulated in antiviral responses, and characterized them by real-time PCR (Hillary Vanderven, MSc) (Vanderven et al., 2012). Candidate antiviral genes will be tested for function (Alysson Blaine, MSc., Graham Blyth, MSc. candidate). We will also examine gene regulation of key antiviral genes (Yanna Xiao, Ph.D. candidate).

MHC class I gene organization and diversity in ducks

We showed that the organization of the MHC class I region in ducks has functional implications for severe limitation of the nature of the antigens that can be transported and presented in ducks (Mesa et al., 2004; Moon et al., 2005). This helps us understand the weak memory responses that allow ducks to be continually re-infected with influenza viruses. Only one MHC class I gene is highly expressed, while 4 others are not. Graduate student Luke Chan is characterizing the MHC class I promoters to understand their regulation. We are also examining the genetic diversity of the antigen presenting and processing genes in wild mallards (Shawna Jensen MSc and Kristina Petkau, MSc). Some allelic variants of these genes may be better at defense against influenza. In addition, features of the duck antibody response contribute to the poor defenses against influenza(Magor, 2011).

Immune gene discovery through genomics projects. We use expressed sequence tag (EST) projects to discover immune relevant genes (Xia et al., 2007). We are particularly interested in genes that allow us to manipulate dendritic cell function, since this is key to successful vaccination. Two ESTs encoded DCIR and DCAR. DCIR is an endocytic receptor on dendritic cells that influences antigen presentation. The closest mammalian homologue of DCAR is BDCA-2, which controls the interferon response. We have sequenced a duck genomic clone containing DCIR, and two DCAR genes to clarify the identity of the genes and examine the evolutionary history of the locus (Guo et al., 2008).

Two ESTs encoded CCL19 and CCL21, homologues of mammalian chemokines involved in the recruitment of naïve lymphocytes and dendritic cells to lymphoid tissues. We showed that CCL19/21 expression is upregulated in influenza-infected tissues and absent in the putative duck lymph nodes (Fleming-Canepa et al., 2011).

PhD student Janet Haley Sperling is using high throughput sequencing technology to survey microbes carried by Canadian ticks. Through this work we hope to determine the incidence of bacterial and viral infections carried by ticks.

Courses

IMIN 200 - Infection and Immunity

Introduces the principles and mechanisms of immunity in eukaryotes. Provides an overview of the major groups of infectious agents (virus, bacteria, parasites) and examines selected microorganisms within the context of the host response to pathogens and pathogen evasion strategies. Pre- or corequisites: BIOCH 200 and MICRB 265. May not be taken for credit if credit already obtained in BIOCH 450. (Offered jointly by the Departments of Biological Sciences and Medical Microbiology and Immunology). [Biological Sciences].

Winter Term 2023

IMIN 372 - Research Techniques in Immunology

A lecture and laboratory course covering theory and practice behind selected immunological techniques. Techniques covered may include: lymphocyte isolation, flow cytometry, mixed lymphocyte reactions, immunocytochemistry, immunoprecipitation, ELISA, western blotting, expression cloning and monoclonal antibody technology. Labs will sometimes require students to return the next day to check on plates or cultures. Prerequisite: IMIN 371. May not be taken for credit if credit already obtained in INT D 372. (Offered jointly by the Departments of Biological Sciences and Medical Microbiology and Immunology). [Biological Sciences]

Winter Term 2023

IMIN 401 - Comparative Immunology

The phylogeny and evolution of immune systems. Examines the various strategies for disease resistance used by all organisms from plants to humans. The use and evolution of specific components of innate and adaptive immunity will be considered within the context of the biology of the organisms. This course involves both lectures and graded discussions. Prerequisites: IMIN 371. Credit cannot be obtained for both IMIN 401 and IMIN 501. (Offered jointly by the Departments of Biological Sciences and Medical Microbiology and Immunology). [Biological Sciences].

Winter Term 2023

IMIN 501 - Advanced Comparative Immunology

The phylogeny and evolution of immune systems. Examines the various strategies for disease resistance used by all organisms from plants to humans. The use and evolution of specific components of innate and adaptive immunity will be considered within the context of the biology of the organisms. Lectures and graded discussions are the same as for IMIN 401, but with additional assignments and evaluation appropriate to graduate studies. Prerequisite: Consent of instructor. Credit cannot be obtained for both IMIN 401 and IMIN 501. (Offered jointly by the Departments of Biological Sciences and Medical Microbiology and Immunology). [Biological Sciences].

Winter Term 2023

Browse more courses taught by Katharine Magor