Lili Mou, PhD

Assistant Professor, Faculty of Science - Computing Science

Contact

Assistant Professor, Faculty of Science - Computing Science
Email
lmou@ualberta.ca

Overview

About

Dr. Lili Mou is an Assistant Professor at the Department of Computing Science, University of Alberta. He is also an Alberta Machine Intelligence Institute (Amii) Fellow and a Canada CIFAR AI (CCAI) Chair. Lili received his BS and PhD degrees in 2012 and 2017, respectively, from School of EECS, Peking University. After that, he worked as a postdoctoral fellow at the University of Waterloo and a research scientist at Adeptmind (a startup in Toronto, Canada). His research interests include deep learning applied to natural language processing as well as programming language processing. He has publications at top conferences and journals, including AAAI, ACL, CIKM, COLING, EMNLP, ICASSP, ICLR, ICML, IJCAI, INTERSPEECH, NAACL-HLT, NeurIPS, and TACL (in alphabetical order).


Research

My research mission is to build an intelligent system that can understand and interact with humans via natural language, involving both text understanding and generation. Towards this long-term goal, I am focusing on fundamental problems in machine learning (especially, deep learning) methods applied to natural language processing, including feature extraction in the discrete input space, weakly supervised learning in the discrete latent space, and sentence synthesis in the discrete output space. My work has been successfully applied to various NLP tasks, including information extraction, semantic parsing, syntactic parsing, text generation, and many others. 

Announcements

Admitting

I am admitting all-level students. Applicants should be addressed to the department portal.

If you meet one of the following criteria, please directly contact me:

  1. Collaborator of me
  2. Has a publication at a reputable venue (such as those I have published)
  3. Recommended by a trusted researcher who I know

Due to the time constraint, I may not reply every email if you don't meet the above criteria.

Courses

CMPUT 466 - Machine Learning Essentials

Learning is essential for many real-world tasks, including recognition, diagnosis, forecasting and data-mining. This course provides a broad overview of topics in machine learning, from foundational methods for regression, classification and dimensionality reduction to more complex modeling with neural networks. It will also provide the formal foundations for understanding when learning is possible and practical. This single course is an alternative to the more in-depth two-course sequence on machine learning with CMPUT 267 and 467. Prerequisites: CMPUT 204 or 275; any 300-level Computing Science course; MATH 125 or 127; one of MATH 115, 118, 136, 146, or 156; and one of STAT 141, 151, 161, 181, 235, 265, SCI 151, or MATH 181. Credit cannot be obtained in CMPUT 466 if credit has already been obtained for CMPUT 467.


CMPUT 499 - Topics in Computing Science

This topics course is designed for a one on one individual study course between a student and an instructor. Prerequisites are determined by the instructor in the course outline. See Note (3) above.


CMPUT 566 - Topics in Computing Science


CMPUT 605 - Topics in Computing Science


CMPUT 651 - Topics in Artificial Intelligence


Browse more courses taught by Lili Mou