Carlos Velazquez Martinez, PhD

Associate Professor, Faculty of Pharmacy & Pharmaceutical Sciences


Associate Professor, Faculty of Pharmacy & Pharmaceutical Sciences
(780) 248-1557
2142-L Katz Group Centre For Research
11315 - 87 Ave NW
Edmonton AB
T6G 2H5

By appointment only


Area of Study / Keywords

Medicinal chemistry


Education and training

Postdoctoral fellow, National Cancer Institute at Frederick, Maryland USA (2005 - 2008).

PhD, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta (2001 - 2005).

MSc, Faculty of Chemistry, National University of Mexico (UNAM), Mexico (1994 - 1997).

BSc, Faculty of Pharmacy, University of Guadalajara, Mexico (1989 - 1994).

Academic experience

Associate Professor (July 2014 to date).

Assistant Professor (2008 - 2014).

Professional organizations

Canadian Society for Chemistry (CSC)

Mexican Chemical Society (Sociedad Química de México) – Member and Associate Editor.


My medicinal chemistry research program involves the design, synthesis, and biological evaluation of molecules that could potentially delay, inhibit, or cease carcinogenesis.

Discovery of new Forkhead box M1 (FOXM1) transcription factor modulators.

The forkhead box M1 (FOXM1) proteins are redox-responsive transcription factors essential for the expression of a wide variety of proteins required in cell mitosis. However, it has been determined that tumor cells undergo accelerated ERK-mediated FOXM1 phosphorylation, which leads to increased nuclear accumulation of FOXM1 and subsequent activation of the FOXM1-dependent transcriptional cascade. Genome-wide gene expression profiling of cancers has consistently identified FOXM1 as one of the most commonly upregulated genes in the early stages of carcinogenesis, and abnormal activation of FOXM1 gene expression is now regarded as one of the hallmarks of a wide variety of human malignancies. Accumulating evidence suggests that targeting FOXM1 can be a useful tool to decrease cancer resistance to a wide variety of chemotherapeutic agents, suggesting that FOXM1 modulators may be clinically useful drugs for the combinatorial treatment of cancer.

There are no reported drugs which directly bind to, and interfere with, the FOXM1 DNA binding domain in cancer cells. In this regard, the most common (still experimental) approaches described in the literature to decrease the in vitro and in vivo transcriptional activity of FOXM1, are (1) siRNA, and (2) proteasome inhibitors (which increase the expression of a negative regulator of FOXM1). Both of these techniques have significant disadvantages which makes them not suitable for the immediate development of therapeutic alternatives. This is where our research project takes off.

As part of an interdisciplinary research project aimed to validate the FOXM1 transcription factor as a drug target, we recently developed a molecular modeling approach in which we have accurately determined the binding energies of more than 3,000 FDA-approved drugs when docked (in silico) in the FOXM1a / DNA binding domain. We identified several promising lead compounds possessing varying degrees of direct binding affinities (unpublished data). 

This specific aim of this research project is to generate essential information to determine if FOXM1 could be established as a “druggable” target, by testing known (FDA-approved) molecules which could directly interfere with the transcriptional activity of FOXM1. We also want to generate pharmacophores which could be used to design new chemically-modified drug derivatives with improved binding affinities for the FOXM1 DNA binding domain. Finally, the long-term goal of this research project is to generate data that will help us understand how to design potent/efficient drugs targeting not only the oncogenic FOXM1 protein but also transcription factors in general.


I collaborate in the following courses taught at the Faculty of Pharmacy and Pharmaceutical Sciences:

Undergraduate courses:

PHARM 201 (Medicinal Chemistry) - Coordinator & contributor.

Graduate courses:

PHARM 570 (Advanced Spectroscopic Analysis) - Coordinator & contributor.

PHARM 624 (Applications of NMR Spectroscopy to Pharmaceutical and Medicinal Chemistry) - Coordinator & contributor.


July 20th, 2020

To all applicants: Please note that right now I am not accepting any students or postdoctoral fellows. However, if you want to be considered for a research position in the near future (6-12 months from now) please fill out the application form described in the following link: Online application (Velazquez Research Group)


PHARM 201 - Principles of Medicinal Chemistry

Introduces students to fundamental principles in medicinal chemistry necessary to understand the relationship between drug structure and drug action. The clinical relevance of medicinal chemistry will be explored through examination of drug structure, properties, classification, cell targets, and selected design/development strategies. (Restricted to Pharmacy students.)

Fall Term 2020
PHARM 570 - Advanced Pharmaceutical Analysis - Spectroscopy

Applications of instrumental methods of analysis (ultraviolet and infrared spectroscopy; NMR; mass spectrometry; atomic absorption spectroscopy) to pharmaceutical compounds. Offered in odd-numbered years. Prerequisite: Consent of Faculty.

Fall Term 2020
PHARM 624 - Application of Nuclear Magnetic Resonance Spectroscopy to Medicinal and Pharmaceutical Chemistry

Basic interpretation and examples of use of NMR spectroscopy in problems of pharmaceutical synthesis and its studies of the mode of action of medicinally active compounds. Prerequisite: consent of Faculty. Note: Offered alternate years.

Winter Term 2021

Browse more courses taught by Carlos Velazquez Martinez


Anticancer activity of eugenol is not related to regulation of the oncogenic transcription factor Forkhead Box M1
Author(s): Luiz Alexandre Marques Wiirzler, Rafael Pazinatto Aguiar, Ciomar Aparecida Bersani- Amado, Carlos Alberto Velázquez-Martínez, Roberto K. Nakamura Cuman
Publication: Acta Scientiarum
Volume: 38
Issue: 2
Page Numbers: 159-163
External Link:
Hydrogen sulfide-releasing naproxen suppresses colon cancer cell growth and inhibits NF-κB
Author(s): Ravinder Kodela, Niharika Nath, Mitali Chottapadhyay, Carlos A. Velazquez Martinez, Khosrow Kashfi.
Publication: Drug Design, Development and Therapy
Volume: 9
Page Numbers: 1-10

Untying the knot of transcription factor druggability: Molecular modeling study of FOXM1 inhibitors
Author(s): S. Amirhossein Tabatabaei-Dakhili, Rodrigo Aguayo-Ortiz, Laura Domínguez, Carlos A. Velázquez-Martínez.
Publication: Journal of Molecular Graphics and Modelling
Volume: 80
Page Numbers: 197-210
External Link: