W Rozmus, PhD

Professor, Faculty of Science - Physics


Professor, Faculty of Science - Physics
(780) 492-8486
3-124 Centennial Ctr For Interdisciplinary SCS II
11335 Saskatchewan Drive NW
Edmonton AB
T6G 2H5



M. Sc., University of Warsaw, Warsaw, Poland, 1973.
Ph. D., Institute for Nuclear Studies, Warsaw, Poland, 1978

Visiting Professorships:
National Ignition Facility, Lawrence Livermore National Laboratory, USA (2011-12),
Department of Physics, Imperial College, London, UK (2004-05),
Institute for Laser Science and Applications, Lawrence Livermore National Laboratory, Livermore, USA (1997-98),
Centre de Physique Theorique, Ecole Polytechnique, Palaiseau, France (1990-91).



My research has been focused on theoretical and computational plasma physics. Theoretical problems in plasma science are formidable. The goal is to achieve quantitative understanding of nonlinear, many body processes in ionized gases often out of equilibrium. I have contributed over the years to the development of theoretical and numerical methods in plasma theory, with emphasis on nonlinear phenomena, transport and kinetic theory. These theoretical models have been applied in the interpretation of plasma laboratory experiments, with particular attention to laser plasma interaction experiments.

For several decades the field of laser matter interaction has been driven by problems and challenges provided by inertial confinement fusion experiments. In recent years it has been also rapidly expanding into new areas of basic studies and applications, mainly due to dramatic new developments in a technology of ultrashort laser pulse generation and experimental conditions achieved in compression experiments of relevance to astrophysics. We are now on the brink of new developments in x-ray laser matter interactions at high radiation intensities. My research follows these new directions with studies on ultrashort pulse laser interaction with solid and gaseous targets, strongly coupled plasmas and x-ray Thomson scattering. I have also established a collaborative project in the biomedical applications of lasers. This research is focused on cytometry and cell sorting.


PHYS 124 - Particles and Waves

Algebra-based course primarily for students in life, environmental, and medical sciences. It guides the student through two distinct types of motion: motion of matter (particles) and wave motion. Vectors, forces, bodies in equilibrium, review of kinematics and basic dynamics; conservation of momentum and energy; circular motion; vibrations; elastic waves in matter; sound; wave optics; black body radiation, photons, de Broglie waves. Examples relevant in environmental, life, and medical sciences will be emphasized. Prerequisites: Physics 20 or equivalent, Mathematics 30-1. Physics 30 is strongly recommended. Note: Credit may be obtained for only one of PHYS 124, 144, or EN PH 131. Note: To proceed to PHYS 181 after taking PHYS 124, it is strongly recommended that a minimum grade of B- be achieved in PHYS 124.

PHYS 381 - Electromagnetic Theory I

Review of scalar and vector fields; Gauss and Stokes theorems; curvilinear coordinates; Dirac delta function; electrostatic field and potential; electrostatic energy; conductors, capacitors; Laplace's equation; boundary value problems; methods of images; multipoles; electrostatic field in matter; polarization; displacement; linear dielectrics; magnetostatic field; Biot-Savart and Ampere's law; vector potential; magnetostatic field in matter; magnetization; linear and nonlinear magnetic media. Prerequisites: PHYS 181 or 230 or 281; MA PH 251 or MATH 201 or 337; MA PH 351 or MATH 209 or 315 or 317.

PHYS 635 - Statistical Theory of Plasmas

Browse more courses taught by W Rozmus