Anthony Yeung, PhD

Professor, Faculty of Engineering - Chemical and Materials Engineering Dept
Associate Chair, Faculty of Engineering - Chemical and Materials Engineering Dept

Contact

Professor, Faculty of Engineering - Chemical and Materials Engineering Dept
Email
tony.yeung@ualberta.ca
Phone
(780) 492-3669
Address
12-241 Donadeo Innovation Centre For Engineering
9211-116 St
Edmonton AB
T6G 2H5

Associate Chair, Faculty of Engineering - Chemical and Materials Engineering Dept
Email
tony.yeung@ualberta.ca

Overview

About

I obtained my doctorate in Physics from the University of British Columbia in 1994. After working as a post-doctoral fellow for several years, I was hired by Syncrude Canada Ltd. as a Research Scientist. My research at Syncrude was focused on colloid and interface science, with applications to bitumen demulsification and froth treatment. I returned to academia in 2000, joining the Department of Chemical & Materials Engineering at the University of Alberta, and have been working here since.  



Research

Dr Yeung's chief research interests are the mechanics and thermodynamics of fluid-fluid interfaces, two-dimensional transport phenomena, and experimental studies on microscopic deformable surfaces. This work has application in the areas of emulsions, oil sands processing, macromolecules at fluid-fluid interfaces (e.g., water-based coatings, food colloids, biomembranes) and the attachment/transport of particulates at the oil water interface. Dr. Yeung is a project leader with the Centre for Oil Sands Innovation.

Principal Research Interest: Microinterfacial Phenomena

Physical systems of interest are deformable surfaces on the micrometre scale. In particular, we study:

  • mechanics and thermodynamics of fluid-fluid interfaces
  • two-dimensional transport phenomena
  • experimental studies on microscopic deformable surfaces

Areas of Application

  • emulsions
  • oil sands processing
  • macromolecules at fluid-fluid interfaces (e.g., water-based coatings, food colloids, biomembranes)

Many important systems in industrial and biological applications appear in the form of liquid-liquid dispersions, i.e., the dispersion of micrometre-sized liquid drops in a distinct (often immiscible) liquid. Examples of such heterogeneous systems include: emulsions, water-based latexes, biological cells, and microcapsules used in drug delivery. The most important attribute of any liquid-liquid dispersion is arguably its stability - that is, the ability of the dispersed droplets to resist coalescence and coagulation. Regardless of the specific application, the stability of any liquid-liquid dispersion is, without exception, controlled by the physical properties of the micrometre-scale interfaces. These interfaces will, in the present context, be referred to as microinterfaces.

Recent research had suggested that the physical properties of microinterfaces can be quite distinct from their macroscopic counterparts. As such, in situ studies on microinterfacial phenomena have become essential. Our research is focussed on the fundamentals of microinterfacial phenomena, based on rigorous principles of mechanics and thermodynamics. Equal emphasis will be placed on the theoretical and experimental aspects of this research.

Keywords: interfacial transport; deformable surfaces on the micron scale

Courses

CH E 611 - Advanced Transport Phenomena

Transport expressions for physical properties are combined with conservation laws to yield generalized equations used to solve a variety of engineering problems in fluid mechanics, and heat and mass transfer; steady-state and transient cases; special topics in non-Newtonian flow and forced diffusion.

Winter Term 2021
CME 200 - Introduction to Chemical and Materials Engineering

Topics of interest to second year Chemical and Materials Engineering students, with special reference to industries in Alberta, including coverage of elements of ethics, equity, concepts of sustainable development and environmental stewardship, public and worker safety and health considerations including the context of the Alberta Occupational Health and Safety Act. Offered in a single day during the first week of September. Restricted to students registered in the Department of Chemical and Materials Engineering.

Fall Term 2020
CME 481 - Colloquium I

Communication and oral presentations. Graded on a pass/fail basis. Prerequisite: 85 units completed or consent of instructor.

Fall Term 2020

Browse more courses taught by Anthony Yeung