Wolfgang Jaeger, PhD

Professor, Faculty of Science - Chemistry

Contact

Professor, Faculty of Science - Chemistry
Email
wjaeger@ualberta.ca
Phone
(780) 492-5020
Address
4-244 Centennial Ctr For Interdisciplinary SCS II
11335 Saskatchewan Drive NW
Edmonton AB
T6G 2H5

Overview

About

Ph.D., Christian Albrechts University


Research

Physical and chemical properties of condensed phase matter are often determined by non-bonded intermolecular interactions, such as van der Waals interactions and hydrogen bonding. A fundamental description of these macroscopic properties requires detailed knowledge about the corresponding microscopic interactions, i.e., interactions on the molecular level. Similarly, certain biological processes, such as protein folding and molecular recognition, can be regarded as the concerted action of many microscopic site interactions.

A prerequisite for exploring and understanding the link between molecular interactions and macroscopic properties is the availability of accurate potential energy surfaces for binary interactions. A further step is then the investigation of ternary - systems in order to extract information about non-pairwise additive contributions to the interaction energy. The most detailed and accurate experimental information about such interactions can be obtained using spectroscopic methods.

The research objective is the investigation of rotational and ro-vibrational spectra of binary and ternary van der Waals complexes. The complexes are formed in a pulsed supersonic molecular expansion and then subjected to a microwave excitation pulse. The resulting molecular coherent spontaneous emission signal ("super-radiation", "free-induction-decay") is A/D-converted and stored in a fast transient recorder. A Fourier transformation of the time-domain signal gives the frequency spectrum. Intermolecular vibrational transitions are detected with a newly developed double resonance technique, using Terahertz radiation sources.

The research offers the opportunity to be involved in a diverse range of areas: from development and use of state-of-the-art scientific instrumentation, computer programming for experiment control and spectral analyses to syntheses of isotopically labelled compounds.

Courses

CHEM 477 - Molecular Symmetry and Spectroscopy

Application of the principles of molecular symmetry to molecular properties. Topics include group theory with emphasis on vibrational motion and normal vibrations; quantum mechanics of vibration and rotation; magnetic resonance spectroscopy; perturbation methods; selection rules in rotational, infrared, and Raman spectroscopy; molecular symmetry and molecular orbitals; electronic spectroscopy of polyatomic molecules. Prerequisite: CHEM 282 and one 300-level Chemistry course; or consent of Instructor.


CHEM 577 - Molecular Symmetry and Spectroscopy

Application of the principles of molecular symmetry to molecular properties. Topics include group theory with emphasis on vibrational motion and normal vibrations; quantum mechanics of vibration and rotation; magnetic resonance spectroscopy; perturbation methods; selection rules in rotational, infrared, and Raman spectroscopy; molecular symmetry and molecular orbitals; electronic spectroscopy of polyatomic molecules. Not open to students with credit in CHEM 477.


Browse more courses taught by Wolfgang Jaeger