The fundamentals of statistical mechanics are covered to set up the theoretical framework for Molecular Dynamics (MD) simulation. The basic components of MD simulation are discussed in detail, followed by a brief foray into Monte Carlo simulation. A variety of applications are presented, including the study of structural properties of liquids, the calculation of diffusion coefficients for a solute in a solvent, and the calculation of reaction rate constants. A brief overview of methods for incorporating quantum effects into MD simulations is given. Computational exercises will be assigned to exemplify various topics encountered in the lectures. Prerequisite: CHEM 282 and CHEM 371; or consent of the instructor.