Circuit element definitions. Circuit laws: Ohm's, KVL, KCL. Resistive voltage and current dividers. Basic loop and nodal analysis. Dependent sources. Circuit theorems: linearity, superposition, maximum power transfer, Thevenin, Norton. Time domain behavior of inductance and capacitance, energy storage. Sinusoidal signals, complex numbers, phasor and impedance concepts. Magnetically coupled networks. Single phase power and power factor. Prerequisites: MATH 101, 102. Credit may be obtained in only one of ECE 202, E E 240, ECE 209 or E E 239, unless approved by the Department.

TH 11:00 - 12:20 (ETLC E1-007)

M 15:00 - 15:50 (ETLC E1-007)

Boolean algebra, truth tables, Karnaugh maps. Switching devices and their symbology with an introduction to NAND and NOR logic. Number systems, codes, minimization procedures, synthesis of combinational networks. Synchronous sequential circuits, flip-flops, counters. Arithmetic circuits. Introduction to computer-aided design and simulation tools for digital design and implementation. Requires payment of additional student instructional support fees. Refer to the Tuition and Fees page in the University Regulations section of the Calendar. Credit may be obtained in only one of ECE 210, E E 280 or CMPUT 329.

TH 12:30 - 13:50 (ETLC E1-017)

Review of semiconductor fundamentals. Analysis of metal-semiconductor (MS), metal-insulator-semiconductor (MIS) and semiconductor heterojunctions including band diagram, depletion approximation, C-V and I-V characteristics. Advanced MOSFETs including short channel effects and scaling theory. Introduction to III-V FETs.

MW 10:00 - 11:20 (ECERF W3-087)