MEC E - Mechanical Engineering

Offered By:
Faculty of Engineering

Below are the courses available from the MEC E code. Select a course to view the available classes, additional class notes, and class times.

MEC E 200 - Introduction to Mechanical Engineering View Available Classes

★ 2 (fi 5)(EITH/SP/SU, 1-2S-0)

Introduction to the profession of mechanical engineering with special emphasis of industries in Alberta, including coverage of elements of ethics, equity, concepts of sustainable development and environmental stewardship, public and worker safety and health considerations including the context of the Alberta Occupational Health and Safety Act. Selected guest speakers on design problems in mechanical engineering. Communication skills including written and oral presentations.


MEC E 200A - Introduction to Mechanical Engineering View Available Classes

★ 1 (fi 5)(EITH/SP/SU, 1-2S-0)

Introduction to the profession of mechanical engineering with special emphasis of industries in Alberta, including coverage of elements of ethics, equity, concepts of sustainable development and environmental stewardship, public and worker safety and health considerations including the context of the Alberta Occupational Health and Safety Act. Selected guest speakers on design problems in mechanical engineering. Communication skills including written and oral presentations.


MEC E 200B - Introduction to Mechanical Engineering View Available Classes

★ 1 (fi 5)(EITH/SP/SU, 1-2S-0)

Introduction to the profession of mechanical engineering with special emphasis of industries in Alberta, including coverage of elements of ethics, equity, concepts of sustainable development and environmental stewardship, public and worker safety and health considerations including the context of the Alberta Occupational Health and Safety Act. Selected guest speakers on design problems in mechanical engineering. Communication skills including written and oral presentations.


MEC E 230 - Introduction to Thermo-Fluid Sciences View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-1S-0)

Introduction to modes of heat transfer. One dimensional heat conduction. Heat transfer from surfaces. Introduction to fluid mechanics. Fluid properties. Fluid statics. Use of control volumes. Internal flows. Prerequisites: MATH 101, EN PH 131.


MEC E 230A - Introduction to Thermo-Fluid Sciences View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-1S-0)

Introduction to modes of heat transfer. One dimensional heat conduction. Heat transfer from surfaces. Introduction to fluid mechanics. Fluid properties. Fluid statics. Use of control volumes. Internal flows. Prerequisites: MATH 101, EN PH 131.


MEC E 230B - Introduction to Thermo-Fluid Sciences View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-1S-0)

Introduction to modes of heat transfer. One dimensional heat conduction. Heat transfer from surfaces. Introduction to fluid mechanics. Fluid properties. Fluid statics. Use of control volumes. Internal flows. Prerequisites: MATH 101, EN PH 131.


MEC E 250 - Engineering Mechanics II View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-1S-0)

Moments of inertia. Kinematics and kinetics of rigid body motion, energy and momentum methods, impact, mechanical vibrations. Prerequisites: ENGG 130, EN PH 131 and MATH 101. There is a consolidated exam.


MEC E 250A - Engineering Mechanics II View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-1S-0)

Moments of inertia. Kinematics and kinetics of rigid body motion, energy and momentum methods, impact, mechanical vibrations. Prerequisites: ENGG 130, EN PH 131 and MATH 101. There is a consolidated exam


MEC E 250B - Engineering Mechanics II View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-1S-0)

Moments of inertia. Kinematics and kinetics of rigid body motion, energy and momentum methods, impact, mechanical vibrations. Prerequisites: ENGG 130, EN PH 131 and MATH 101. There is a consolidated exam.


MEC E 260 - Mechanical Design I View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 2-0-3)

Design morphology, analysis and design of components, mechanical design with electric motors, computer-aided design introduction, design project. Prerequisite: ENGG 160. Corequisite: MEC E 265 and CIV E 270.


MEC E 260A - Mechanical Design I View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 2-0-3)

Design morphology, analysis and design of components, mechanical design with electric motors, computer-aided design introduction, design project. Prerequisite: ENGG 160. Corequisite: MEC E 265 and CIV E 270.


MEC E 260B - Mechanical Design I View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 2-0-3)

Design morphology, analysis and design of components, mechanical design with electric motors, computer-aided design introduction, design project. Prerequisite: ENGG 160. Corequisite: MEC E 265 and CIV E 270.


MEC E 265 - Engineering Graphics and CAD View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 2-0-3)

Engineering drawing and sketching, conventional drafting, computer-aided drawing in 2D and 3D, solid modelling, and computer-aided design.


MEC E 265A - Engineering Graphics and CAD View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 2-0-3)

Engineering drawing and sketching, conventional drafting, computer-aided drawing in 2D and 3D, solid modelling, and computer-aided design.


MEC E 265B - Engineering Graphics and CAD View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 2-0-3)

Engineering drawing and sketching, conventional drafting, computer-aided drawing in 2D and 3D, solid modelling, and computer-aided design.


MEC E 300 - Mechanical Measurements View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-1S-0)

Characterization and behavior of measuring systems. Statistics and analysis of measurement data; measurement techniques applied to fundamental mechanical engineering phenomena. Prerequisites: CIV E 270, ECE 209, STAT 235. Corequisite: MEC E 330 or MEC E 331.


MEC E 300A - Mechanical Measurements View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-1S-0)

Characterization and behavior of measuring systems. Statistics and analysis of measurement data; measurement techniques applied to fundamental mechanical engineering phenomena. Prerequisites: CIV E 270, ECE 209, STAT 235. Corequisite: MEC E 330 or MEC E 331.


MEC E 300B - Mechanical Measurements View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-1S-0)

Characterization and behavior of measuring systems. Statistics and analysis of measurement data; measurement techniques applied to fundamental mechanical engineering phenomena. Prerequisites: CIV E 270, ECE 209, STAT 235. Corequisite: MEC E 330 or MEC E 331.


MEC E 301 - Mechanical Engineering Laboratory I View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 1-0-3)

Laboratory experiments in mechanical engineering measurement techniques, treatment of measurement data, introduction to engineering report writing. Corequisite: MEC E 300.


MEC E 301A - Mechanical Engineering Laboratory I View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 1-0-3)

Laboratory experiments in mechanical engineering measurement techniques, treatment of measurement data, introduction to engineering report writing. Corequisite: MEC E 300.


MEC E 301B - Mechanical Engineering Laboratory I View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 1-0-3)

Laboratory experiments in mechanical engineering measurement techniques, treatment of measurement data, introduction to engineering report writing. Corequisite: MEC E 300.


MEC E 331 - Fluid Mechanics I View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-0-1)

External flow, boundary layers, momentum theories, similitude, fluid metering, fluid friction, fluid friction in pipes, pipe networks. Prerequisites: MEC E 230, 250, MATH 209. Corequisite: CH E 243. Credit can only be granted for one of MEC E 330 or MEC E 331.


MEC E 331A - Fluid Mechanics I View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-1)

External flow, boundary layers, momentum theories, similitude, fluid metering, fluid friction, fluid friction in pipes, pipe networks. Prerequisites: MEC E 230, 250, MATH 209. Corequisite: CH E 243. Credit can only be granted for one of MEC E 330 or MEC E 331.


MEC E 331B - Fluid Mechanics I View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-1)

External flow, boundary layers, momentum theories, similitude, fluid metering, fluid friction, fluid friction in pipes, pipe networks. Prerequisites: MEC E 230, 250, MATH 209. Corequisite: CH E 243. Credit can only be granted for one of MEC E 330 or MEC E 331.


MEC E 340 - Applied Thermodynamics View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-0-1)

Review of thermodynamic principles. Applications to gas compressors, vapour and gas power cycles, heat pump cycles. Availability analysis. Psychrometrics. Combustion analysis. Prerequisite: CH E 243.


MEC E 340A - Applied Thermodynamics View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-1)

Review of thermodynamic principles. Applications to gas compressors, vapour and gas power cycles, heat pump cycles. Availability analysis. Psychrometrics. Combustion analysis. Prerequisite: CH E 243.


MEC E 340B - Applied Thermodynamics View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-1)

Review of thermodynamic principles. Applications to gas compressors, vapour and gas power cycles, heat pump cycles. Availability analysis. Psychrometrics. Combustion analysis. Prerequisite: CH E 243.


MEC E 360 - Mechanical Design II View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-0-1.5)

Design procedures, theories of failure, material selection, design for fatigue, creep and relaxation, selection of gears and bearings and application of computer-aided design software. Prerequisite: MEC E 260 and 265, MAT E 202 and CIV E 270. Corequisite: MEC E 362.


MEC E 360A - Mechanical Design II View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-1.5)

Design procedures, theories of failure, material selection, design for fatigue, creep and relaxation, selection of gears and bearings and application of computer-aided design software. Prerequisite: MEC E 260 and 265, MAT E 202 and CIV E 270. Corequisite: MEC E 362.


MEC E 360B - Mechanical Design II View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-1.5)

Design procedures, theories of failure, material selection, design for fatigue, creep and relaxation, selection of gears and bearings and application of computer-aided design software. Prerequisite: MEC E 260 and 265, MAT E 202 and CIV E 270. Corequisite: MEC E 362.


MEC E 362 - Mechanics of Machines View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-0-1.5)

Velocities and acceleration in plane mechanisms, balancing of rotating and reciprocating machinery, gears and gear trains. Prerequisite: MEC E 250.


MEC E 362A - Mechanics of Machines View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-1.5)

Velocities and acceleration in plane mechanisms, balancing of rotating and reciprocating machinery, gears and gear trains. Prerequisite: MEC E 250.


MEC E 362B - Mechanics of Machines View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-1.5)

Velocities and acceleration in plane mechanisms, balancing of rotating and reciprocating machinery, gears and gear trains. Prerequisite: MEC E 250.


MEC E 364 - Manufacturing Processes View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 2-0-3)

Primary manufacturing processes including casting, forming, machining, powdered metallurgy and surface technology, interactions between design, materials (metals, polymers, ceramics, composites) and processes, selected field trips and laboratory activities. Requires payment of additional student instructional support fees. Refer to the Tuition and Fees page in the University Regulations section of the Calendar. Prerequisite: MEC E 260.


MEC E 364A - Manufacturing Processes View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 2-0-3)

Primary manufacturing processes including casting, forming, machining, powdered metallurgy and surface technology, interactions between design, materials (metals, polymers, ceramics, composites) and processes, selected field trips and laboratory activities. Requires payment of additional student instructional support fees. Refer to the Tuition and Fees page in the University Regulations section of the Calendar. Prerequisite: MEC E 260.


MEC E 364B - Manufacturing Processes View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 2-0-3)

Primary manufacturing processes including casting, forming, machining, powdered metallurgy and surface technology, interactions between design, materials (metals, polymers, ceramics, composites) and processes, selected field trips and laboratory activities. Requires payment of additional student instructional support fees. Refer to the Tuition and Fees page in the University Regulations section of the Calendar. Prerequisite: MEC E 260.


MEC E 371 - Heat Transfer View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-1S-0)

Mechanisms of heat transfer, steady and unsteady heat conduction, numerical analysis, thermal radiation, free and forced convection, heat exchanger analysis and heat transfer with change of phase and mass transfer. Prerequisites: MEC E 230, CH E 243. Corequisites: MATH 300 and MEC E 331. Credit can only be granted for one of MEC E 370 or MEC E 371.


MEC E 371A - Heat Transfer View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-1S-0)

Mechanisms of heat transfer, steady and unsteady heat conduction, numerical analysis, thermal radiation, free and forced convection, heat exchanger analysis and heat transfer with change of phase and mass transfer. Prerequisites: MEC E 230, CH E 243. Corequisites: MATH 300 and MEC E 331. Credit can only be granted for one of MEC E 370 or MEC E 371.


MEC E 371B - Heat Transfer View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-1S-0)

Mechanisms of heat transfer, steady and unsteady heat conduction, numerical analysis, thermal radiation, free and forced convection, heat exchanger analysis and heat transfer with change of phase and mass transfer. Prerequisites: MEC E 230, CH E 243. Corequisites: MATH 300 and MEC E 331. Credit can only be granted for one of MEC E 370 or MEC E 371.


MEC E 380 - Advanced Strength of Materials I View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-1S-0)

Stress, strain, stress-strain relation, time-independent and time-dependent behavior, virtual work and energy theorems, deformations, indeterminate systems, matrix methods. Prerequisite: MEC E 260 and CIV E 270.


MEC E 380A - Advanced Strength of Materials I View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-1S-0)

Stress, strain, stress-strain relation, time-independent and time-dependent behavior, virtual work and energy theorems, deformations, indeterminate systems, matrix methods. Prerequisite: MEC E 260 and CIV E 270.


MEC E 380B - Advanced Strength of Materials I View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-1S-0)

Stress, strain, stress-strain relation, time-independent and time-dependent behavior, virtual work and energy theorems, deformations, indeterminate systems, matrix methods. Prerequisite: MEC E 260 and CIV E 270.


MEC E 390 - Numerical Methods of Mechanical Engineers View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-0-1)

Application of numerical methods to mechanical engineering problems; topics include sources and definitions of error, root finding, solutions of linear and non-linear systems of equations, regression, interpolaton, numerical integration and differentiation, solution of initial value and boundary value ordinary differential equations. Applications include dynamics, solid mechanics, heat transfer and fluid flow. Prerequisites: MATH 102 and 201.


MEC E 390A - Numerical Methods of Mechanical Engineers View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-1)

Application of numerical methods to mechanical engineering problems; topics include sources and definitions of error, root finding, solutions of linear and non-linear systems of equations, regression, interpolaton, numerical integration and differentiation, solution of initial value and boundary value ordinary differential equations. Applications include dynamics, solid mechanics, heat transfer and fluid flow. Prerequisites: MATH 102 and 201.


MEC E 390B - Numerical Methods of Mechanical Engineers View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-1)

Application of numerical methods to mechanical engineering problems; topics include sources and definitions of error, root finding, solutions of linear and non-linear systems of equations, regression, interpolaton, numerical integration and differentiation, solution of initial value and boundary value ordinary differential equations. Applications include dynamics, solid mechanics, heat transfer and fluid flow. Prerequisites: MATH 102 and 201.


MEC E 403 - Mechanical Engineering Laboratory II View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 1-0-3)

Selected laboratory experiments in applied mechanics and thermosciences. Prerequisites: MEC E 300, 301, 340 and 360.


MEC E 403A - Mechanical Engineering Laboratory II View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 1-0-3)

Selected laboratory experiments in applied mechanics and thermosciences. Prerequisites: MEC E 300, 301, 340 and 360.


MEC E 403B - Mechanical Engineering Laboratory II View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 1-0-3)

Selected laboratory experiments in applied mechanics and thermosciences. Prerequisites: MEC E 300, 301, 340 and 360.


MEC E 409 - Experimental Design Project I View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 2-0-4)

Selected group projects in experimental measurement and mechanical design. Two to four person groups develop planning, design, testing and report writing skills on projects in applied mechanics, thermosciences and engineering management. Prerequisites: MEC E 301 and ENG M 310 or 401.


MEC E 415 - Busting Myths with Analysis View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-0-0)

Engineering analysis is used to examine the veracity of commonly held science and technology myths. Prerequisites: MEC E 330 or 331, 340, 370 or 371, 380, 390, MATH 300.


MEC E 420 - Feedback Control Design of Dynamic Systems View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-0-3/2)

Design of linear feedback control systems for command-following error, stability, and dynamic response specifications. PID, Root-locus, frequency response and design techniques. An introduction to structural design limitations. Examples emphasizing Mechanical Engineering systems. Some use of computer aided design with MATLAB/Simulink. Controls Lab - control of mechanical systems. Prerequisites: MEC E 390. Credit can only be granted for one of MEC E 420, ECE 362, CH E 448.


MEC E 420A - Feedback Control Design of Dynamic Systems View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-3/2)

Design of linear feedback control systems for command-following error, stability, and dynamic response specifications. PID, Root-locus, frequency response and design techniques. An introduction to structural design limitations. Examples emphasizing Mechanical Engineering systems. Some use of computer aided design with MATLAB/Simulink. Controls Lab - control of mechanical systems. Prerequisites: MEC E 390. Credit can only be granted for one of MEC E 420, ECE 362, CH E 448.


MEC E 420B - Feedback Control Design of Dynamic Systems View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-3/2)

Design of linear feedback control systems for command-following error, stability, and dynamic response specifications. PID, Root-locus, frequency response and design techniques. An introduction to structural design limitations. Examples emphasizing Mechanical Engineering systems. Some use of computer aided design with MATLAB/Simulink. Controls Lab - control of mechanical systems. Prerequisites: MEC E 390. Credit can only be granted for one of MEC E 420, ECE 362, CH E 448.


MEC E 430 - Fluid Mechanics II View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-0-0)

Navier-Stokes equations, introductory computational fluid dynamics, boundary layers, compressible fluid flow (variable area ducts, normal and oblique shock waves, Prantdl-Meyer expansions, adiabatic and isothermal pipe flow), two phase flow. Prerequisite: MEC E 330 or 331.


MEC E 430A - Fluid Mechanics II View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-0)

Navier-Stokes equations, introductory computational fluid dynamics, boundary layers, compressible fluid flow (variable area ducts, normal and oblique shock waves, Prantdl-Meyer expansions, adiabatic and isothermal pipe flow), two phase flow. Prerequisite: MEC E 330 or 331.


MEC E 430B - Fluid Mechanics II View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-0)

Navier-Stokes equations, introductory computational fluid dynamics, boundary layers, compressible fluid flow (variable area ducts, normal and oblique shock waves, Prantdl-Meyer expansions, adiabatic and isothermal pipe flow), two phase flow. Prerequisite: MEC E 330 or 331.


MEC E 437 - Research Methods in Fluid Dynamics View Available Classes

★ 3 (fi 6)(EITH/SP/SU, 3-0-3)

Knowledge-generation in fluid dynamics research, including: critical assessment of engineering data; cross-validation of experimental and numerical data; hands-on experience with modern flow measurement (e.g. particle image velocimetry (PIV)); and commercial computational fluid dynamics (CFD) as necessary to produce and analyse data; laser and lab safety. Prerequisites: MEC E 390, and 331 or equivalent.


MEC E 437A - Research Methods in Fluid Dynamics View Available Classes

★ 1.5 (fi 6)(EITH/SP/SU, 3-0-3)

Knowledge-generation in fluid dynamics research, including: critical assessment of engineering data; cross-validation of experimental and numerical data; hands-on experience with modern flow measurement (e.g. particle image velocimetry (PIV)); and commercial computational fluid dynamics (CFD) as necessary to produce and analyse data; laser and lab safety. Prerequisites: MEC E 390, and 331 or equivalent.


MEC E 437B - Research Methods in Fluid Dynamics View Available Classes

★ 1.5 (fi 6)(EITH/SP/SU, 3-0-3)

Knowledge-generation in fluid dynamics research, including: critical assessment of engineering data; cross-validation of experimental and numerical data; hands-on experience with modern flow measurement (e.g. particle image velocimetry (PIV)); and commercial computational fluid dynamics (CFD) as necessary to produce and analyse data; laser and lab safety. Prerequisites: MEC E 390, and 331 or equivalent.


MEC E 442 - Vehicle Propulsion Systems View Available Classes

★ 3 (fi 8)(EITHER, 3-0-0)

Analysis and design of vehicle propulsion systems including vehicles with different electrification levels (electric, hybrid electric, and internal combustion engine) and vehicles with different levels of autonomy (partial to full automation). Prerequisites: MATH 201. Restricted to year 4 or 5 engineering students.


MEC E 443 - Energy Conversion View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-0-0)

Sources, flow and overall efficiency of use of various energy forms in society, thermodynamic analysis of energy conversion devices such as thermoelectric and magnetohydrodynamic generators, solar and fuel cells, energy from fission and fusion reactors. Prerequisite: MEC E 340.


MEC E 443A - Energy Conversion View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-0)

Sources, flow and overall efficiency of use of various energy forms in society, thermodynamic analysis of energy conversion devices such as thermoelectric and magnetohydrodynamic generators, solar and fuel cells, energy from fission and fusion reactors. Prerequisite: MEC E 340.


MEC E 443B - Energy Conversion View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-0)

Sources, flow and overall efficiency of use of various energy forms in society, thermodynamic analysis of energy conversion devices such as thermoelectric and magnetohydrodynamic generators, solar and fuel cells, energy from fission and fusion reactors. Prerequisite: MEC E 340.


MEC E 451 - Vibrations and Sound View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-0-1)

Free and forced vibration of single degree of freedom systems with and without damping, vibration isolation, free vibration of multi degrees of freedom systems, vibration absorption, beam vibrations, sound waves, sound sources, subjective aspects of noise. Prerequisites: MEC E 250 and MATH 300.


MEC E 451A - Vibrations and Sound View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-1)

Free and forced vibration of single degree of freedom systems with and without damping, vibration isolation, free vibration of multi degrees of freedom systems, vibration absorption, beam vibrations, sound waves, sound sources, subjective aspects of noise. Prerequisites: MEC E 250 and MATH 300.


MEC E 451B - Vibrations and Sound View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-1)

Free and forced vibration of single degree of freedom systems with and without damping, vibration isolation, free vibration of multi degrees of freedom systems, vibration absorption, beam vibrations, sound waves, sound sources, subjective aspects of noise. Prerequisites: MEC E 250 and MATH 300.


MEC E 460 - Design Project View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 2-1S-4)

Feasibility study and detailed design of a project which requires students to exercise creative ability, to make assumptions and decisions based on synthesis of technical knowledge, and in general, devise new designs, rather than analyse existing ones. Prerequisites: MEC E 200, 330 or 331, 340, 360, 362, 370 or 371, 380. Corequisite: ENG M 310 (or ENG M 401).


MEC E 460A - Design Project View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 2-1S-4)

Feasibility study and detailed design of a project which requires students to exercise creative ability, to make assumptions and decisions based on synthesis of technical knowledge, and in general, devise new designs, rather than analyse existing ones. Prerequisites: MEC E 200, 330 or 331, 340, 360, 362, 370 or 371, 380. Corequisite: ENG M 310 (or ENG M 401).


MEC E 460B - Design Project View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 2-1S-4)

Feasibility study and detailed design of a project which requires students to exercise creative ability, to make assumptions and decisions based on synthesis of technical knowledge, and in general, devise new designs, rather than analyse existing ones. Prerequisites: MEC E 200, 330 or 331, 340, 360, 362, 370 or 371, 380. Corequisite: ENG M 310 (or ENG M 401).


MEC E 462 - Piping Systems Design View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-2S-0)

Design of piping systems. The course will focus on water, refrigerant, steam, and speciality piping systems. Equipment selection will be included. Incorporation of plumbing, building, mechanical, NFPA, and ASHRAE codes and standards. Prerequisite: MEC E 330 or 331, or equivalent.


MEC E 463 - Thermo-Fluids Systems Design View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-0-2)

Design and optimization of thermo-fluid systems, heating and ventilating equipment and load calculations, system design, piping networks, heat exchanger analysis and design, computer-aided design projects. Prerequisites: MEC E 330 or 331, 340, and 370 or 371.


MEC E 463A - Thermo-Fluids Systems Design View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-2)

Design and optimization of thermo-fluid systems, heating and ventilating equipment and load calculations, system design, piping networks, heat exchanger analysis and design, computer-aided design projects. Prerequisites: MEC E 330 or 331, 340, and 370 or 371.


MEC E 463B - Thermo-Fluids Systems Design View Available Classes

★ 1.5 (fi 8)(EITH/SP/SU, 3-0-2)

Design and optimization of thermo-fluid systems, heating and ventilating equipment and load calculations, system design, piping networks, heat exchanger analysis and design, computer-aided design projects. Prerequisites: MEC E 330 or 331, 340, and 370 or 371.


MEC E 464 - Design for Manufacture View Available Classes

★ 1 (fi 3)(EITH/SP/SU, 1-2S-4)

Design of machine components for ease of manufacture. Application of measurement, inspection, and reverse engineering techniques. Preparation of working drawings for manufacturing. Introduction to machining operations, including hands-on machine shop practice. Evaluation of design performance. Sections offered at an increased rate of fee assessment; refer to the Tuition and Fees page in the University Regulations sections of the Calendar. Prerequisites: MEC E 260, 265, 300, and 301.


MEC E 464A - Design for Manufacture View Available Classes

★ 0.5 (fi 3)(EITH/SP/SU, 1-2S-4)

Design of machine components for ease of manufacture. Application of measurement, inspection, and reverse engineering techniques. Preparation of working drawings for manufacturing. Introduction to machining operations, including hands-on machine shop practice. Evaluation of design performance. Sections offered at an increased rate of fee assessment; refer to the Tuition and Fees page in the University Regulations sections of the Calendar. Prerequisites: MEC E 260, 265, 300, and 301.


MEC E 464B - Design for Manufacture View Available Classes

★ 0.5 (fi 3)(EITH/SP/SU, 1-2S-4)

Design of machine components for ease of manufacture. Application of measurement, inspection, and reverse engineering techniques. Preparation of working drawings for manufacturing. Introduction to machining operations, including hands-on machine shop practice. Evaluation of design performance. Sections offered at an increased rate of fee assessment; refer to the Tuition and Fees page in the University Regulations sections of the Calendar. Prerequisites: MEC E 260, 265, 300, and 301.


MEC E 466 - Building Systems Design View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-0-2)

Design and analysis of building systems for maintaining the indoor environment. Design of heating, ventilation and air conditioning systems through load calculations, equipment selection and specification. Prerequisites: MEC E 340, 370 or 371.


MEC E 467 - Modelling and Simulation of Engineering Systems View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-0-3)

Modeling and analysis of systems and processes that include technological decision making. Formulation and solution methods for systems including associated resource requirements and other system inputs. Numerical methods for simulation. Projects will involve simulation software to support analysis and design of engineering systems and processes. Prerequisites: MEC E 250 and 390. Note that credit cannot be obtained in both MEC E 467 and ENG M 541.


MEC E 468 - Numerical Simulation in Mechanical Engineering Design View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-0-3)

Computer modelling in mechanical engineering. Simulation of mechanisms. Stress analysis and heat transfer using commercial software. Emphasis is on numerical model design including testing and verification methods, and the critical interpretation of the computed results. Credit cannot be obtained in both MEC E 468 and 568. Prerequisites: MEC E 265, 362, 370 or 371, 380, 390.


MEC E 469 - Experimental Design Project II View Available Classes

★ 2.5 (fi 6)(EITH/SP/SU, 1-0-3)

Advanced project in experimental measurement and mechanical designs in applied mechanics, thermosciences and engineering management. Prerequisite: MEC E 409.


MEC E 480 - Advanced Strength of Materials II View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 3-0-0)

Special topics for beams, torsion, pressure vessels, plane stress and strain, stability, fracture mechanics. Prerequisites: MEC E 360, 380, MATH 300.


MEC E 485 - Biomechanical Modelling of Human Tissues and Systems View Available Classes

★ 3 (fi 8)(EITHER, 3-0-0)

Biomechanics; mechanical characterization of biological tissues using elastic and viscoelastic models. Rheology of blood and flow properties. Static and dynamic analyses of selected physiological systems. Application of biomaterials in external and internal prostheses. Prerequisites: BME 320 and 321; MEC E 300, 362, 380; and MEC E 330 or 331. Credit cannot be obtained in both MEC E 585 and 485.


MEC E 494 - Introduction to Research View Available Classes

★ 0.5 (fi 2)(EITH/SP/SU, 0-1S-0)

Introduction to methods of mechanical engineering research. Organizational seminars for the research project in the following term. Prerequisites: MEC E 330, 380, and consent of Department.


MEC E 495 - Research Project View Available Classes

★ 3 (fi 8)(EITH/SP/SU, 0-0-6)

Mechanical Engineering undergraduate research project with a faculty member. Prerequisites: MEC E 494 and consent of Department.


MEC E 537 - Aerodynamics View Available Classes

★ 3 (fi 6)(EITH/SP/SU, 3-0-0)

Boundary layer flow, vorticity, circulation and aerodynamic lift, wing theory, aeronautical applications. Prerequisite: MEC E 330 or 331.


MEC E 537A - Aerodynamics View Available Classes

★ 1.5 (fi 6)(EITH/SP/SU, 3-0-0)

Boundary layer flow, vorticity, circulation and aerodynamic lift, wing theory, aeronautical applications. Prerequisite: MEC E 330 or 331.


MEC E 537B - Aerodynamics View Available Classes

★ 1.5 (fi 6)(EITH/SP/SU, 3-0-0)

Boundary layer flow, vorticity, circulation and aerodynamic lift, wing theory, aeronautical applications. Prerequisite: MEC E 330 or 331.


MEC E 539 - Applied Computational Fluid Dynamics View Available Classes

★ 3 (fi 6)(EITH/SP/SU, 3-0-3)

Model selection and simplification, grid generation and grid independence, transient and advection terms treatment, turbulence modeling, verification and validation, best practices. Hands-on experience with commercial CFD codes to demonstrate the application of: theory, proper setup and analysis. Prerequisites: MEC E 390, and 331 or equivalent.


MEC E 539A - Applied Computational Fluid Dynamics View Available Classes

★ 1.5 (fi 6)(EITH/SP/SU, 3-0-3)

Model selection and simplification, grid generation and grid independence, transient and advection terms treatment, turbulence modeling, verification and validation, best practices. Hands-on experience with commercial CFD codes to demonstrate the application of: theory, proper setup and analysis. Prerequisites: MEC E 390, and 331 or equivalent.


MEC E 539B - Applied Computational Fluid Dynamics View Available Classes

★ 1.5 (fi 6)(EITH/SP/SU, 3-0-3)

Model selection and simplification, grid generation and grid independence, transient and advection terms treatment, turbulence modeling, verification and validation, best practices. Hands-on experience with commercial CFD codes to demonstrate the application of: theory, proper setup and analysis. Prerequisites: MEC E 390, and 331 or equivalent.


MEC E 541 - Combustion Engines View Available Classes

★ 3 (fi 6)(EITH/SP/SU, 3-0-0)

History of basic cycles, combustion theory including ignition flame propagation and engine knock, cycle analysis with deviations from ideal cycles and performance characteristics, fuels, design and operation of carburation and injection processes, exhaust emissions measurements. Identification of design parameters and their effect on emissions. Prerequisite: MEC E 340.


MEC E 563 - Finite Element Method for Mechanical Engineering View Available Classes

★ 3 (fi 6)(EITH/SP/SU, 3-0-3)

Application of finite element methods to mechanical engineering problems; topics include direct stiffness methods, assembly, constraints, solution techniques, post-processing, element types and the Galkerin procedure. Applications include beam truss and frame analysis, plane strain and stress problems, heat transfer and dynamic analysis Prerequisites: MATH 300, MEC E 360, 390.


MEC E 563A - Finite Element Method for Mechanical Engineering View Available Classes

★ 1.5 (fi 6)(EITH/SP/SU, 3-0-3)

Application of finite element methods to mechanical engineering problems; topics include direct stiffness methods, assembly, constraints, solution techniques, post-processing, element types and the Galkerin procedure. Applications include beam truss and frame analysis, plane strain and stress problems, heat transfer and dynamic analysis Prerequisites: MATH 300, MEC E 360, 390.


MEC E 563B - Finite Element Method for Mechanical Engineering View Available Classes

★ 1.5 (fi 6)(EITH/SP/SU, 3-0-3)

Application of finite element methods to mechanical engineering problems; topics include direct stiffness methods, assembly, constraints, solution techniques, post-processing, element types and the Galkerin procedure. Applications include beam truss and frame analysis, plane strain and stress problems, heat transfer and dynamic analysis Prerequisites: MATH 300, MEC E 360, 390.


MEC E 569 - Mechanics and Design of Composite Materials View Available Classes

★ 3 (fi 6)(EITH/SP/SU, 3-0-0)

Introduction to composite materials. Mechanical characterization and strength theories of a lamina. Micro-mechanical analysis of a lamina. Macro-mechanical analysis of laminates. Failure analysis and design of laminates. Prerequisite: MEC E 380.


MEC E 606 - Photonics Measurement Systems in Fluid Mechanics View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Fundamentals of optics and optoelectronics for applications in measurement systems used in fluid mechanics including PIV, PLIF, LDA, and particle sizing. Design and development of measurement systems. Prerequisites: Consent of instructor.


MEC E 607 - Optical-Mechanical Sensing View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Light propagation in media; thermal and mechanical perturbations to media and effects on light propagation; topics in photo-elasticity including the relationships between stress/strain and optical properties, birefringence and polarization; waveguides and common structures in opto-mechanical sensing systems including waveguide interferometers, intensity modulators, Bragg structures; strain-optic models used in analyzing micro-optical mechanical systems. Coverage of application areas: structural health monitoring, biomedical technologies, diagnostics.


MEC E 614 - Iterative Learning Control View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Mathematical preliminaries (discrete time systems). Stability and transient response of Iterative Learning Control (ILC). Design of ILC in both the time and frequency domain. Convergence and design of repetitive control.


MEC E 615 - Control Methods Applied to Partial Differential Equations View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Introduction to control methods applied to systems governed by partial differential equations. The focus will be on fluid and solid mechanics applications with boundary actuation.


MEC E 620 - Combustion View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Chemical reactions, chemical equilibrium and flame temperatures. Flame propagation and explosion theories. Detonations. Air pollution from combustion sources.


MEC E 630 - Fluid Dynamics View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Kinematics of fluid motion, fundamental fluid equations and concepts, laminar boundary layers, potential flow, stability and transition, introduction to turbulence.


MEC E 632 - Turbulent Fluid Dynamics View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Governing equations of turbulent flow. Statistical and phenomenological theories of turbulent transport of momentum, heat and mass in wall-bounded and free flows. Computational techniques, empirical data and applications. Prerequisite: MEC E 630 or equivalent or consent of Instructor.


MEC E 633 - Particle Engineering View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Microparticle terminology and definitions, synthesis of structured microparticles, analytical methods for micro- and nanoparticles, applications of particle engineering.


MEC E 634 - Aerosol Science and Technology View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Introduction to aerosol science. Particle size statistics. Particle motion: Stokes law, Brownian motion, and thermophoresis. Particle coagulation, condensation, evaporation, and nucleation. Particle electrical and optical properties. Aerosol measurement techniques.


MEC E 635 - Mechanics of Respiratory Drug Delivery View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Introduction to pharmaceutical aerosol delivery to the lung. Particle size distributions. Motion of a single aerosol particle in a fluid. Particle size changes due to evaporation or condensation. Fluid dynamics and particle deposition in the respiratory tract. Jet nebulizers. Dry powder inhalers. Metered dose propellant inhalers. Prerequisite: MEC E 330 or 331 or equivalent or consent of Instructor.


MEC E 636 - Environmental Fluid Mechanics View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Transport of passive and active scalars. Plumes and environmental convection with applications to air pollution. Gravity currents and intrusions. Surface gravity waves. Flow in porous media. Darcy's law with applications to groundwater flow and oil recovery. Turbulent boundary layers in the natural environment.


MEC E 637 - Colloidal Hydrodynamics View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Colloidal Systems; Colloidal Interactions; Hydrodynamics; Analysis of Complex Fluid flows; Thin Films; Flow in Porous Media; Microfluidics; Selected applications: Coagulation, flocculation and particle deposition; Sedimentation; Separation technologies such as deep bed filtration, membrane filtration, and chromatography; Microfluidic applications involving complex fluids; Colloid applications involving complex fluids; Colloid facilitated transport. Prerequisite/Corequisite; MEC E 430, 630, or approval of instructor.


MEC E 638 - Vortex Flows View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Vortex dynamics approach to large-scale structures in turbulent flows. Vortex motion equations, conservation laws, and modelling using discrete vortices. Prerequisite: a senior undergraduate course in fluid mechanics or consent of Instructor.


MEC E 639 - Computational Fluid Dynamics View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Computational fluid dynamics methods for incompressible and compressible fluids. Model development, discretization methods, and topics on advanced coding, e.g., high performance computing, and parallelism, will be covered.


MEC E 641 - Environmental Technologies in Buildings View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Study of thermal comfort, indoor air quality, and HVAC systems of buildings. Application of the basic HVAC principles as well as a range of technologies and analysis techniques for designing healthy and comfortable indoor environments. Investigation procedures and methods to identify indoor air quality problems as well as the techniques to prevent or mitigate indoor air problems.


MEC E 643 - Renewable Energy Engineering and Sustainability View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Principles of renewable energy systems such as solar, wind, tidal, biomass, geothermal, and fuel cells. Environmental aspects of implementation of renewable energy e.g. hydro and nuclear energy sources. Energy conservation and conventional fossil fuel sources. New technologies and trends in renewable energy. Concept of sustainability and sustainable design for energy systems. Elementary economics of implementation of renewable energy sources and related policy and social issues. Prerequisites: consent of instructor.


MEC E 644 - Polymeric and Composite Nanofibers View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Formation, characterization, modelling and applications of polymeric and composite nanofibers. Emphasis on nanofibers produced using electrospinning.


MEC E 645 - Transport and Kinetic Processes in Electrochemical Systems View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Introduction to the thermodynamics of electrochemical systems such as batteries and fuel cells. Analysis of the main physical process in electrochemical systems: electrode kinetics, mass transport, and charge transport. Introduction to fuel cells and fuel cell systems.


MEC E 646 - Interfacial Science and Surface Engineering View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Interfacial forces and fluid flow, surface energy and spreading, interfacial tension, interfacial rheology, bulk, elastic and viscous modulus, liquid foam structure and stability, electrokinetic flows, electrowetting, solid-vapor and liquid-fluid interface characterization for interfacial forces. Prerequisite: MEC E 430 equivalent, 630, or approval of instructor.


MEC E 650 - Analytical Dynamics View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Principle of virtual work; Lagrange's equations of motion for holonomic and non-holonomic systems; Hamilton's principle; application to gyroscopes, stabilizers, etc.


MEC E 651 - Advanced Robotics: Analysis and Control View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Introduction to advanced robotics including mobile robots, redundant manipulators, walking robots, aerial and marine autonomous vehicles. Kinematic and dynamic models for advanced robots. Linear and nonlinear control theory overview with applications to advanced robots.


MEC E 653 - Signal Processing of Time and Spectral Series View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Practical application of processing techniques to the measurement, filtering and analysis of mechanical system signals; topics include: signal classification, A/D conversion, spectral analysis, digital filtering and real-time signal processing.


MEC E 656 - Wave Propagation in Structures View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Introduction to advanced structures, dynamic elasticity equations and concepts, wave propagation in flexural structures, active control of wave propagation and vibration.


MEC E 662 - Introduction to Polymer Microfabrication View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Microfabrication technologies, MEMS and microfluidics using polymers and plastics, introduction to soft-lithography, choosing polymers for microfabricated products, functional polymers and composites, characterization and testing of microstructured polymers, packaging and bonding of polymers.


MEC E 663 - Theory and Applications of Finite Element Method View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Introduction of the basic theory and applications of the finite element method. Applications will focus on linear partial differential equations in solid mechanics, fluid mechanics and thermal science.


MEC E 664 - Advanced Design and Simulation of Micro and Nano Electromechanical Sensors (MEMS/NEMS) View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Advanced topics dealing with MEMS technologies, transduction mechanisms, and microfabricated sensors and actuators. Sensors for acceleration, rotation rate, pressure, and different micro actuators. MEMS in microfluidics and biomedical applications. Chemical, gas, and biosensors. Prerequisite: MEC E 563 and consent of Instructor. Not open to students with credit in MEC E 564.


MEC E 668 - Design of Experiments in Mechanical Engineering View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Introduction to Experimental Design, with particular emphasis on mechanical engineering. Randomized factorial and fractional factorial experiments. Fitting regression models and optimization. Applications to analytical and computer models.


MEC E 669 - Multifunctional Polymer-Based Composites View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Multifunctional Polymer-based Composites (MFPC) manufacturing processes, micro- and nanoscale characterization; Modeling strategies for MFPC properties (continuum, atomistic, multiscale); Characteristics and synergistic effects of MFPC with hard and soft inclusions; Modeling, characterization and properties of MFPC with electrically conductive fillers, for enhanced thermal conductivity, with magnetic properties, for EMF shielding/reflection, with increased diffusion barrier properties. Prerequisites: MEC E 563, 569 or consent of instructor.


MEC E 671 - Heat Conduction View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Formulation of the basic governing equations in rectangular, cylindrical and spherical coordinates. Consideration of linear and nonlinear problems. Topics include: conduction with energy generation, transpiration cooling, conduction in non-stationary systems, phase transformation, and heat transfer in living tissue. Exact analytic solutions. Application of the integral method and perturbation solutions. Prerequisites: MEC E 370 or 371 and MATH 300, or equivalent.


MEC E 680 - Continuum Mechanics View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Introduction to cartesian tensor algebra and calculus; analysis of finite deformation and kinematics of motion; transport theorems and balance laws; analysis of stress; continuum thermodynamics, constitutive equations and material symmetry with application to solids and fluids.


MEC E 681 - Elasticity View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Extension, torsion and flexure of beams; two-dimensional problems; complex variable methods; integral transform methods; variational methods.


MEC E 682 - Nanomechanics View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Surface forces, van der Waals forces, electrostatic forces, Poisson-Boltzmann equation, capillary forces, adhesion contact mechanics, surface energy, tip-surface interaction, adhesion of micro-cantilevers, microbeam arrays, carbon nanotubes, dissipation in MEMS/NEMS, fluid flow with slip, mechanical models for cells, biomembranes, cellular filaments, microtubules, molecular dynamics (MD) simulation. Prerequisite: MEC E 380 or consent of instructor.


MEC E 683 - Statistical Mechanics with Applications View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Review of classical mechanics and thermodynamics concepts; introduction to principles of statistical mechanics; concepts of ensembles and ensemble average; probability function and partition function in different ensembles; calculation of thermodynamic quantities from statistical mechanics; applications to polymer elasticity, cell mechanics, fracture mechanics and theories of electrolytic solutions; Monte-Carlo and Molecular Dynamics simulations in different ensembles. Prerequisites: Consent of instructor.


MEC E 685 - Macro Fracture Mechanics View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Basic concepts of linear and nonlinear fracture mechanics: linear and nonlinear stationary crack-tip stress, strain and displacement fields; energy balance and energy release rates; fracture resistance concepts-static and dynamic fracture toughness; criteria for crack growth; fracture control methodology and applications.


MEC E 686 - Assessment and Analysis of Biomechanical Motion View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Biomedical technologies for motion measurement; Three-dimensional kinematics analysis of multi-segment body; Biomedical technologies for pressure, force and moment measurement; Three-dimensional kinetics analysis of multi-segment body; Energy, work, power assessment for motion; Muscle activity measurement and analysis; Biomechanical data analytics: signal processing, dynamical system analysis.


MEC E 687 - Introduction to Impact Dynamics of Materials View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Elastic waves, plastic waves, shock waves and stress wave propagation in solids. Low velocity impact on fibre composite materials and failure criteria. High velocity impact mechanisms and fracture criteria. Impact penetration mechanics. Dynamic deformation and fracture of materials. Prerequisite: MEC E 480 or consent of Instructor.


MEC E 690 - Analytical Techniques in Engineering View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Methods of applied mathematics with particular emphasis on the analysis of analytical models arising in engineering science. At least three topics will be covered from the following: well-posedness of mathematical models in engineering science; generalized functions with applications to the solution of initial and boundary value problems; complex variable analysis with applications to partial differential equations; asymptotic analysis; calculus of variations; integral equations with applications; introductory functional analysis with applications.


MEC E 691 - Advanced Metrology for Micro- or Nanosystems View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Advanced data processing techniques. Statistics for data analysis. Measurement techniques based on electromagnetic interactions and other transduction methods.


MEC E 692 - Fundamentals of Engineering Numerical Analysis View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Interpolation, numerical differentiation (finite differences), numerical integration, numerical solution of ordinary differential equations, numerical solution of partial differential equations, discrete transform methods.


MEC E 694 - Applied Computational Intelligence for Engineers View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)

Introduction to intelligent agents and environments. Examples of application of computational intelligence in engineering. Solving problems by searching. Learning through optimization. Feature selection and dimension reduction for managing real-world data. Application of learning in classification and function approximation. Data clustering. Fuzzy logic and fuzzy inference systems.


MEC E 788 - Advanced Topics in Solid Mechanics I View Available Classes

★ 3 (fi 6)(EITHER, 3-0-0)
There is no available course description.

MEC E 900A - Directed Research Project View Available Classes

★ 3 (fi 12)(VAR, UNASSIGNED)

Detailed Engineering report in the student's major area of interest.


MEC E 900B - Directed Research Project View Available Classes

★ 3 (fi 12)(VAR, UNASSIGNED)

Detailed Engineering report in the student's major area of interest.


MEC E 910A - Directed Research Project View Available Classes

★ 1.5 (fi 6)(VAR, UNASSIGNED)

Detailed Engineering report in the student's major area of interest.


MEC E 910B - Directed Research Project View Available Classes

★ 1.5 (fi 6)(VAR, UNASSIGNED)

Detailed Engineering Report in the student's major area of interest.