Search
This course is a continuation of BIOCH 400. It introduces additional experimental techniques important in biochemical research and continues to focus on development of fundamental laboratory skills and practices. Together with BIOCH 400, this course is intended as preparation for undertaking a directed research project in biochemistry. Prerequisites: BIOCH 400 and consent of the Department.
Research and/or reading course. This course allows a student to study an area of biochemistry in much greater detail than is usual in most courses. The format is usually a reading/tutorial in which the student carries out directed reading and meets with the tutor at regular intervals for discussion and further guidance. Term papers or presentations may be used for evaluation purposes. A mature attitude towards learning is essential, as the course often requires independent study and research. Students who have a particular interest in any specific area of biochemistry are encouraged to meet with the faculty members to explore the possibilities of arranging a mutually satisfactory topic. Prerequisites: At least two of BIOCH 410, 415, 420, 425, 430, 441, 455, or 465 and consent of the Department. Available only to students in the Biochemistry Specialization or Honors programs in the final year of their program.
Principles of the biochemistry of cell communication and signal transduction through receptor activation, generation of second messengers, control of protein modifications and regulation of the cell cycle. The course emphasizes mechanisms responsible for the regulation of cell migration, division and death with an emphasis on cancer. Prerequisites: BIOCH 310, 320 and 330, all with a minimum grade of B-, or consent of the Department. This course is intended for students in Honors or Specialization in Biochemistry. Students in other programs may be admitted subject to availability and with the consent of the Department. Graduate students may not register for credit (see BIOCH 510).
Starting: 2025-09-01 BIOCH 410 - Signal Transduction
Principles of the biochemistry of cell communication and signal transduction through receptor activation, generation of second messengers, control of protein modifications and regulation of the cell cycle. The course emphasizes mechanisms responsible for the regulation of cell migration, division and death with an emphasis on cancer. Prerequisites: BIOCH 310, 320 and 330, all with a minimum grade of B-, or consent of the Department. This course is intended for students in Honors or Specialization in Biochemistry. Students in other programs may be admitted subject to availability and with the consent of the Department. Graduate students may not register for credit (see BIOCH 510).
This course introduces students to adaptive and pathological changes in human metabolic pathways. The course will cover various situations which alter the 'normal' function of the metabolic pathways, such as lifestyle modifications (e.g. exercise, diet), starvation, cancer, diabetes, aging and neurodegenerative disorders, immune diseases, and mitochondrial diseases. Prerequisite(s): BIOCH 310 with a minimum grade of B-. This course is restricted to students in an Honors or Major Program in Biochemistry, students in other programs may be admitted subject to availability and with the consent of the Department.
Starting: 2025-09-01 BIOCH 415 - Metabolic Modifications in Health and Disease
This course introduces students to adaptive and pathological changes in human metabolic pathways. The course will cover various situations which alter the 'normal' function of the metabolic pathways, such as lifestyle modifications (e.g. exercise, diet), starvation, cancer, diabetes, aging and neurodegenerative disorders, immune diseases, and mitochondrial diseases. Prerequisite(s): BIOCH 310 with a minimum grade of B-. This course is restricted to students in an Honors or Major Program in Biochemistry, students in other programs may be admitted subject to availability and with the consent of the Department.
This credit/no-credit course introduces students to the skills required to effectively communicate research in biochemistry. Communication skills will be developed through critical evaluation, identification of effective techniques, and practice. Students will communicate research data to various target audiences, through oral presentations in particular and with a focus on the effective use of images and diagrams to represent and explain research findings. Prerequisites: BIOCH 310, 320 and 330, and consent of the instructor. Co-requisite: BIOCH 499. This course is restricted to students in Honors or Specialization in Biochemistry.
Starting: 2025-09-01 BIOCH 419 - Communicating Biochemistry
This credit/no-credit course introduces students to the skills required to effectively communicate research in biochemistry. Communication skills will be developed through critical evaluation, identification of effective techniques, and practice. Students will communicate research data to various target audiences, through oral presentations in particular and with a focus on the effective use of images and diagrams to represent and explain research findings. Prerequisites: BIOCH 310, 320 and 330, and consent of the instructor. Co-requisite: BIOCH 499. This course is restricted to students in Honors or Specialization in Biochemistry.
Principles of protein structure, function, and dynamics, with an introduction to force fields used in modern molecular dynamics. Focus topics include an introduction to intrinsically disordered proteins and their role in misfolding diseases, the structural biology, ligand binding, and mechanisms of membrane bound enzymes, and mechanisms underlying the regulation of protein function and enzymes involved in cell signaling. Prerequisites: BIOCH 320, with a minimum grade of B- or consent of Department. This course is intended for students in Honors or Specialization in Biochemistry. Students in other programs may be admitted subject to availability and with the consent of the Department. Graduate students may not register for credit (see BIOCH 520).
Starting: 2025-09-01 BIOCH 420 - Proteins: Structure, Function, and Regulation
Principles of protein structure, function, and dynamics, with an introduction to force fields used in modern molecular dynamics. Focus topics include an introduction to intrinsically disordered proteins and their role in misfolding diseases, the structural biology, ligand binding, and mechanisms of membrane bound enzymes, and mechanisms underlying the regulation of protein function and enzymes involved in cell signaling. Prerequisites: BIOCH 320, with a minimum grade of B- or consent of Department. This course is intended for students in Honors or Specialization in Biochemistry. Students in other programs may be admitted subject to availability and with the consent of the Department. Graduate students may not register for credit (see BIOCH 520).
An advanced course focusing on the analysis of protein function and protein-protein interactions within the context of the entire protein complement of a cell. Some aspects of protein structure as it pertains to the principles of protein-protein interactions will be covered along with genetic and biochemical methods for the analysis of protein complexes, protein interaction networks and system wide protein identification and dynamics. This course is intended for students in Honors or Specialization in Biochemistry. Students in other programs may be admitted subject to availability and with the consent of the Department. Prerequisites: BIOCH 320 and BIOCH 330 with a minimum GPA of 3.0 in these courses.
Starting: 2025-09-01 BIOCH 425 - Proteomics
An advanced course focusing on the analysis of protein function and protein-protein interactions within the context of the entire protein complement of a cell. Some aspects of protein structure as it pertains to the principles of protein-protein interactions will be covered along with genetic and biochemical methods for the analysis of protein complexes, protein interaction networks and system wide protein identification and dynamics. This course is intended for students in Honors or Specialization in Biochemistry. Students in other programs may be admitted subject to availability and with the consent of the Department. Prerequisites: BIOCH 320 and BIOCH 330 with a minimum GPA of 3.0 in these courses.
This course focuses on the biochemical mechanisms underlying the regulation of gene expression in eukaryotic cells. The focus will be on the regulation of gene expression at the levels of transcription, post-transcriptional processing, and translation. The course will specifically address biochemical and structural mechanisms underlying gene regulation, as well as biochemical experimental methods that can be used to probe these activities. Prerequisites: BIOCH 320 and 330, both with a minimum grade of B- or consent of Department. This course is intended for students in Honors or Specialization in Biochemistry. Students in other programs may be admitted subject to availability and with the consent of the Department. Graduate students may not register for credit (see BIOCH 530).
Starting: 2025-09-01 BIOCH 430 - Biochemistry of Eukaryotic Gene Expression
This course focuses on the biochemical mechanisms underlying the regulation of gene expression in eukaryotic cells. The focus will be on the regulation of gene expression at the levels of transcription, post-transcriptional processing, and translation. The course will specifically address biochemical and structural mechanisms underlying gene regulation, as well as biochemical experimental methods that can be used to probe these activities. Prerequisites: BIOCH 320 and 330, both with a minimum grade of B- or consent of Department. This course is intended for students in Honors or Specialization in Biochemistry. Students in other programs may be admitted subject to availability and with the consent of the Department. Graduate students may not register for credit (see BIOCH 530).
Survey of the structure and function of biological membranes. Topics include the structure, properties and composition of biomembranes, characterization and structural principles of membrane lipids and proteins, lateral and transverse asymmetry, dynamics, lipid-protein interactions, membrane enzymology, permeability, and biogenesis. Prerequisites: BIOCH 320, with a minimum grade of B- or consent of Department. This course is intended for students in Honors or Specialization in Biochemistry. Students in other programs may be admitted subject to availability and with the consent of the Department. Graduate students may not register for credit (see BIOCH 541).
Starting: 2025-09-01 BIOCH 441 - Structure and Function of Biological Membranes
Survey of the structure and function of biological membranes. Topics include the structure, properties and composition of biomembranes, characterization and structural principles of membrane lipids and proteins, lateral and transverse asymmetry, dynamics, lipid-protein interactions, membrane enzymology, permeability, and biogenesis. Prerequisites: BIOCH 320, with a minimum grade of B- or consent of Department. This course is intended for students in Honors or Specialization in Biochemistry. Students in other programs may be admitted subject to availability and with the consent of the Department. Graduate students may not register for credit (see BIOCH 541).
Survey of biophysical methods used in the characterization and structural determination of biological macromolecules, from ensemble measurements to single-molecule detection. Topics include mass spectrometry, optical spectroscopy, light microscopy, X-ray and neutron diffraction, electron microscopy, molecular dynamics and nuclear magnetic resonance. Emphasis is on using techniques in evaluating structure-function relationships through the discussion of representative macromolecular systems. Prerequisites: BIOCH 320 with a minimum grade of B- or consent of the Department. This course is intended for students in Honors or Specialization in Biochemistry. Students in other programs may be admitted subject to availability and with the consent of the Department. This course cannot be taken for credit if credit has already been obtained in BIOCH 460.
Starting: 2025-09-01 BIOCH 465 - Methods in Molecular Biophysics
Survey of biophysical methods used in the characterization and structural determination of biological macromolecules, from ensemble measurements to single-molecule detection. Topics include mass spectrometry, optical spectroscopy, light microscopy, X-ray and neutron diffraction, electron microscopy, molecular dynamics and nuclear magnetic resonance. Emphasis is on using techniques in evaluating structure-function relationships through the discussion of representative macromolecular systems. Prerequisites: BIOCH 320 with a minimum grade of B- or consent of the Department. This course is intended for students in Honors or Specialization in Biochemistry. Students in other programs may be admitted subject to availability and with the consent of the Department. This course cannot be taken for credit if credit has already been obtained in BIOCH 460.
This course explores both the opportunities and challenges of synthetic life by providing a practical and theoretical introduction to this new discipline through lectures, class discussion, and hands on computational exercises. Topics covered include: natural vs artificial design of genetic circuits, and the theoretical aspects of gene and gene network construction using molecular biology techniques. Prerequisites: BIOCH 330 (or equivalent), registration in the Faculties of Science or Engineering, and a minimum GPA 3.3 (or consent of the department).
This course expands on BIOCH 481, providing opportunity for further skill development in analysis of the function of natural and engineered gene and metabolic networks. These computational labs are intended to explore the concepts applied in computer modeling during the design, testing, and optimization steps required to create biological model systems. Prerequisites: BIOCH 481.
Covers specialized topics of current interest to advanced undergraduates in Biochemistry programs. Consult the Department for details about current offerings. Prerequisites: BIOCH 310, 320 and 330, and consent of the instructor. This course is restricted to students in Honors or Specialization in Biochemistry. Credit for this course may be obtained more than once.
Supervised research within an international laboratory assigned by the Department of Biochemistry, to be carried out over one term (Spring or Summer). The results of the research project will be presented in an oral presentation. Can be taken as a science elective but not as a substitute for required courses in biochemistry. Can be taken for credit in addition to BIOCH 498 and BIOCH 499. Prerequisites: BIOCH 401 and consent of the Department.
Supervised research within a laboratory in the Department of Biochemistry, to be carried out over one term (Fall or Winter). The results of the research project will be presented in a short seminar. This course is intended for senior students in Honors or Specialization in Biochemistry. Students in other programs may be admitted subject to availability and background. This course is not a substitute for required courses in Biochemistry. Requires consent of the Department.
Starting: 2025-09-01 BIOCH 498 - Directed Research Project
Supervised research within a laboratory in the Department of Biochemistry, to be carried out over one term (Fall or Winter). The results of the research project will be presented in a short seminar. This course is intended for senior students in Honors or Specialization in Biochemistry. Students in other programs may be admitted subject to availability and background. Prerequisites: BIOCH 310, 320 and 330, all with a minimum grade of B-. This course is not a substitute for required courses in Biochemistry. Requires consent of the Department.
Supervised research within a laboratory in the Department of Biochemistry, to be carried out over both terms of Fall/Winter. The results of the research project will be presented in a final written report and an oral presentation. This course is required for the Honors program, but can be taken as a science elective by students in the Specialization program. Students in other programs may be admitted subject to availability. Prerequisites: BIOCH 401 and consent of the Department.
Supervised research within a laboratory in the Department of Biochemistry, to be carried out over both terms of Fall/Winter. The results of the research project will be presented in a final written report and an oral presentation. This course is required for the Honors program, but can be taken as a science elective by students in the Specialization program. Students in other programs may be admitted subject to availability. Prerequisites: BIOCH 401 and consent of the Department.
Principles of the biochemistry of cell communication and signal transduction through receptor activation, generation of second messengers, control of protein modifications and regulation of the cell cycle. The course emphasizes mechanisms responsible for the regulation of cell migration, division and death with an emphasis on cancer. Prerequisites: BIOCH 310, 320 and 330, all with a minimum grade of B-, or consent of the Department. Lectures are the same as for BIOCH 410, but with additional assignments and evaluation appropriate to graduate studies. This course may not be taken for credit if credit has already been obtained in BIOCH 410.
Principles of protein structure, function, and dynamics, with an introduction to force fields used in modern molecular dynamics. Focus topics include an introduction to intrinsically disordered proteins and their role in misfolding diseases, the structural biology, ligand binding, and mechanisms of membrane bound enzymes, and mechanisms underlying the regulation of protein function and enzymes involved in cell signaling. Prerequisites: BIOCH 320, with a minimum grade of B- or consent of Department. Lectures are the same as for BIOCH 420, but with additional assignments and evaluation appropriate to graduate studies. Students in other programs may be admitted subject to availability and with the consent of the Department This course may not be taken for credit if credit has already been obtained in BIOCH 420.
An advanced course focusing on the analysis of protein function and protein-protein interactions within the context of the entire protein complement of a cell. Some aspects of protein structure as it pertains to the principles of protein-protein interactions will be covered along with genetic and biochemical methods for the analysis of protein complexes, protein interaction networks and system wide protein identification and dynamics. This course is intended for students in Biochemistry but students in other programs may be admitted subject to availability and with the consent of the Department. Prerequisites: BIOCH 420 and BIOCH 430 or their equivalent with a minimum GPA of 3.2 in these courses.
This course focuses on the biochemical mechanisms underlying the regulation of gene expression in eukaryotic cells. The focus will be on the regulation of gene expression at the levels of transcription, post-transcriptional processing, and translation. The course will specifically address biochemical and structural mechanisms underlying gene regulation, as well as biochemical experimental methods that can be used to probe these activities. Prerequisites: BIOCH 320 and 330 with a minimum grade of B- or consent of Department. Lectures are the same as for BIOCH 430, but with additional assignments and evaluation appropriate to graduate studies. Students in other programs may be admitted subject to availability and with the consent of the Department. This course may not be taken for credit if credit has already been obtained in BIOCH 430.
Survey of the structure and function of biological membranes. Topics include the structure, properties and composition of biomembranes, characterization and structural principles of membrane lipids and proteins, lateral and transverse asymmetry, dynamics, lipid-protein interactions, membrane enzymology, permeability, and biogenesis. Prerequisites: BIOCH 320 or equivalent, with a minimum grade of B- or consent of Department. Lectures are the same as for BIOCH 441, but with additional assignments and evaluation appropriate to graduate studies. Students in other programs may be admitted subject to availability and with the consent of the Department. This course may not be taken for credit if credit has already been obtained in BIOCH 441.
Survey of biophysical methods used in the characterization and structural determination of biological macromolecules, from ensemble measurements to single-molecule detection. Topics include mass spectrometry, optical spectroscopy, light microscopy, X-ray and neutron diffraction, electron microscopy, molecular dynamics and nuclear magnetic resonance. Emphasis is on using techniques in evaluating structure-function relationships through the discussion of representative macromolecular systems. Lectures are the same as for BIOCH 465, but with additional assignments and evaluation appropriate to graduate studies. This course cannot be taken for credit if credit has already been obtained in BIOCH 460 or 465.
Principles of X-ray crystallography as applied to the study of protein and nucleic acid structure. Practical aspects of diffraction and structure solution are demonstrated by a collaborative study of a suitable small molecule of biological interest. Designed for graduate students. Prerequisite: consent of Instructor. Maximum enrolment of 10 students. Offered in alternate years.
Directed reading and seminar course, based on papers taken from recent literature of protein research. Students critically discuss the papers and give oral presentations to the class. Designed for graduate students. Prerequisite: BIOCH 420 or equivalent, or consent of Department.
This course is a journal club and discussion group in which current research topics on nucleic acids, molecular and cellular biology are discussed. Specific subjects presented range from biochemistry, genetics and microbiology to developmental biology and clinical aspects of nucleic acid derived therapeutics.
This course is a journal club and discussion group in which current research topics on nucleic acids, molecular and cellular biology are discussed. Specific subjects presented range from biochemistry, genetics and microbiology to developmental biology and clinical aspects of nucleic acid derived therapeutics.
Seminar course for advanced students. Detailed consideration is given to recent advances in research on protein structure and function and mechanism of enzyme action. Prerequisite: BIOCH 420 or consent of Department.
Seminar course for advanced students. Detailed consideration is given to recent advances in research on protein structure and function and mechanism of enzyme action. Prerequisite: BIOCH 420 or consent of Department.
Directed reading and seminar course, based on papers taken from the recent literature of molecular biology. Students critically discuss the papers and give oral presentations. Note: designed for graduate students; offered yearly. Students in other programs may be admitted subject to availability and with the consent of the Department. Prerequisite: BIOCH 530 or equivalent and consent of the Department.
Seminar course for advanced students covering selected topics from the current literature in the field of membrane structure and function. Prerequisite: BIOCH 441 or consent of Department.
Seminar course for advanced students covering selected topics from the current literature in the field of membrane structure and function. Prerequisite: BIOCH 441 or consent of Department.
Directed reading and seminar course on the structure and function of biological membranes. Topics include membrane biogenesis, bioenergetics, transport and structural aspects of membrane lipids and proteins. Prerequisite: BIOCH 441 or consent of the Department.
A journal club and discussion group addressing topics in the general area of signalling mechanisms that control cell activation, growth, apoptosis and vesicle trafficking. Specific talks range from biochemistry, genetics and microbiology to molecular biology and clinical aspects. Prerequisite: BIOCH 410/510 or consent of Department.
A journal club and discussion group addressing topics in the general area of signalling mechanisms that control cell activation, growth, apoptosis and vesicle trafficking. Specific talks range from biochemistry, genetics and microbiology to molecular biology and clinical aspects. Prerequisite: BIOCH 410/510 or consent of Department.
Seminar for advanced students covering selected topics from the current literature in the field of lipid and lipoprotein research. Prerequisite: BIOCH 555 or consent of Department.
Seminar for advanced students covering selected topics from the current literature in the field of lipid and lipoprotein research. Prerequisite: BIOCH 555 or consent of Department.
Recent developments and use of the current literature are emphasized. Topics include regulation of lipid metabolism, intracellular lipid trafficking, regulation of lipoprotein secretion, lipid transfer among lipoproteins, reverse cholesterol transport, and atherosclerosis. Prerequisite: BIOCH 455, or 555, or consent of Department. Offered in alternate years.
The goal of this course is to provide training in the skills required to succeed in the modern work place. The course will take the form of four-hour monthly sessions, consisting of group discussions, lectures, short assignments and student presentations. There will be presentations by highly successful Ph.D. alumni, which will serve as case studies in how the transition from graduate school to the workplace can occur, and what pitfalls need be avoided in the workplace. Course is graded on cr/nc, students must attend the classes and complete required assignments. Open to graduate students in the Department of Biochemistry and other graduate students with permission of the course instructor.
The goal of this course is to provide training in the skills required to succeed in the modern work place. The course will take the form of four-hour monthly sessions, consisting of group discussions, lectures, short assignments and student presentations. There will be presentations by highly successful Ph.D. alumni, which will serve as case studies in how the transition from graduate school to the workplace can occur, and what pitfalls need be avoided in the workplace. Course is graded on cr/nc, students must attend the classes and complete required assignments. Open to graduate students in the Department of Biochemistry and other graduate students with permission of the course instructor.
Seminar course for advanced students focused on recent advances in research into mechanisms of protein folding and disease states caused by protein misfolding, including prion diseases. Prerequisite: BIOCH 520 or consent of the Department.
Seminar course for advanced students focused on recent advances in research into mechanisms of protein folding and disease states caused by protein misfolding, including prion diseases. Prerequisite: BIOCH 520 or consent of the Department.
A seminar course on topics of current interest in biochemistry. Students will contribute to a presentation based on recent developments published in first rate journals. Attendance at all seminars is expected. Note: open only to graduate students in Biochemistry.
A seminar course on topics of current interest in biochemistry. Students will contribute to a presentation based on recent developments published in first rate journals. Attendance at all seminars is expected. Note: open only to graduate students in Biochemistry.
A seminar course on topics of current interest in biochemistry. Students will contribute a presentation on their research project that includes original data. Attendance at all seminars is expected. Prerequisite: BIOCH 670 or consent of the Department. Note: open only to graduate students in Biochemistry.
A seminar course on topics of current interest in biochemistry. Students will contribute a presentation on their research project that includes original data. Attendance at all seminars is expected. Prerequisite: BIOCH 670 or consent of the Department. Note: open only to graduate students in Biochemistry.
Designed for advanced honors and graduate students interested in the application of nuclear magnetic resonance spectroscopy to biological systems. Topics include quantum mechanical basis of NMR, multinuclear multidimensional NMR experiments, NMR relaxation theory, new NMR applications. Prerequisite: consent of Instructor. Offered in alternate years.
This course will explore the development and application of kinetic models for protein interactions, dynamics, and enzyme catalysis that include the principle of microscopic reversibility/detailed balance. Focus topics may include, but are not limited to: numerical methods for fitting and analyses of experimental kinetic data derived from spectroscopic techniques, as well as blending of all-atom and coarse-grained molecular dynamics methods with experimental data to develop detailed molecular insights into proteins of biological interest. Prerequisites: BIOCH 420, 465, or equivalent and consent of the instructor. Maximum enrolment of 10 students. Offered in alternate years.
A credit/no-credit course for graduate students who are actively participating in the mentorship of undergraduate students in a half term research course (e.g. BIOCH 398 and 498) in the Department of Biochemistry. Mentorship includes activities such as in lab supervision, training, and help with reports and presentations. Can be taken in any year and Spring/Summer session. Credit may be obtained more than once. Requires the submission of an initial project summary with student learning objectives, monthly progress and final reports. Prerequisite: Consent of the Department of Biochemistry.
A credit/no-credit course for graduate students who are actively participating in the mentorship of undergraduate students in a full-term research course (e.g. BIOCH 499) in the Department of Biochemistry. Mentorship includes activities such as in lab supervision, training, and help with reports and presentations. Can be taken in any year. Credit may be obtained more than once. Requires the submission of an initial project summary with student learning objectives, monthly progress and final reports. Prerequisite: Consent of Department of Biochemistry.
A credit/no-credit course for graduate students who are actively participating in the mentorship of undergraduate students in a full-term research course (e.g. BIOCH 499) in the Department of Biochemistry. Mentorship includes activities such as in lab supervision, training, and help with reports and presentations. Can be taken in any year. Credit may be obtained more than once. Requires the submission of an initial project summary with student learning objectives, monthly progress and final reports. Prerequisite: Consent of Department of Biochemistry.
Introduction aux principes fondamentaux de la biochimie. Structures et fonctions des protéines; enzymes; lipides et structure des membranes biologiques; nucléotides et structures des acides nucléiques; bioénergétique et catabolisme des glucides. Préalable(s): CHIM 101; CHIM 164 ou 261 ou SCI 100.
Ce cours est conçu pour permettre une étude rigoureuse des mécanismes moléculaires touchant la bioénergétique et le métabolisme. Le contenu couvre les sujets suivants: les principes de la bioénergétique; les réactions et les voies impliquées dans le métabolisme des glucides, des lipides et de l'azote, ainsi que leur régulation; la phosphorylation oxydative; l'intégration et la régulation hormonale du métabolisme chez les mammifères. Préalable(s): BIOCM 200, CHIM 102 (ou SCI 100) et CHIM 263, avec une moyenne minimale de 2,7 dans ces trois cours.
Starting: 2025-09-01 BIOCM 310 - Bioénergétique et métabolisme
Ce cours est conçu pour permettre une étude rigoureuse des mécanismes moléculaires touchant la bioénergétique et le métabolisme. Le contenu couvre les sujets suivants: les principes de la bioénergétique; les réactions et les voies impliquées dans le métabolisme des glucides, des lipides et de l'azote, ainsi que leur régulation; la phosphorylation oxydative; l'intégration et la régulation hormonale du métabolisme chez les mammifères. Préalable(s): BIOCM 200 et CHIM 102 (ou SCI 100). CHIM 263 est recommandé et peut être suivi de manière concomitante. Note: Ce cours n'est pas accessible aux étudiants ayant ou postulant des crédits pour BIOCH 310.
Ce cours est prévu pour procurer aux étudiants une introduction à la biochimie des acides nucléiques. Il couvre: la structure et les propriétés des nucléotides et acides nucléiques; les technologies d'information basées sur l'ADN; la structure des gènes et des chromosomes; les mécanismes moléculaires de la réplication, de la réparation et de la recombinaison de l'ADN; métabolisme de l'ARN; synthèse et signaux cibles des protéines; régulation de l'expression des gènes. Préalable(s): BIOCM 200, CHIM 102 (ou SCI 100) et CHIM 263, avec une moyenne minimale de 2,7 dans ces troiscours. Note: Ce cours n'est pas accessible aux étudiants ayant ou postulant des crédits pour BIOCH 205.
Starting: 2025-09-01 BIOCM 330 - Acides nucléiques et biologie moléculaire
Ce cours est prévu pour procurer aux étudiants une introduction à la biochimie des acides nucléiques. Il couvre: la structure et les propriétés des nucléotides et acides nucléiques; les technologies d'information basées sur l'ADN; la structure des gènes et des chromosomes; les mécanismes moléculaires de la réplication, de la réparation et de la recombinaison de l'ADN; métabolisme de l'ARN; synthèse et signaux cibles des protéines; régulation de l'expression des gènes. Préalable(s): BIOCM 200 et CHIM 102 (ou SCI 100). CHIM 263 est recommandé et peut être suivi de manière concomitante. Note: Ce cours n'est pas accessible aux étudiants ayant ou postulant des crédits pour BIOCH 310.
The course introduces the biorefining of biomass resources to renewable fuels, chemicals and biomaterials with a focus on reduced carbon emissions. The course integrates elements of circular market economies, sustainability, green chemical approaches, and technology development in the bioindustries. Prerequisite: BIOL 107 and CHEM 101 or 103.
Introduction to computational tools and databases used in the collection and analysis of sequence data and other analytical data from high-throughput molecular biology studies. Students will use existing tools, and learn the underlying algorithms and their limitations. Prerequisite: any 200-level Biological Sciences course or consent of instructor. Credit cannot be obtained for both BIOIN 301 and BIOL 501.
Advanced topics in bioinformatics will be covered. A major part of the course will be devoted to team-based projects involving writing novel bioinformatics tools to deal with current problems in bioinformatics. Prerequisites: BIOIN 301, a 300-level CMPUT course and an additional 300-level course in any of the following BIOCH, BIOIN, BIOL, BOT, CELL, ENT, GENET, IMIN, MA SC, MICRB, MMI, NEURO, PALEO, PHYSL, PMCOL, ZOOL. (Offered jointly by the Departments of Computing Science and Biological Sciences). [Biological Sciences].
An introduction to cell structure and function. Major topics include the molecules and structures that comprise prokaryotic and eukaryotic cells, the mechanisms by which energy is harvested and used by cells, how cells reproduce, and how information is stored and used within a cell via the processes of DNA replication, transcription, and translation. Prerequisites: Biology 30 and Chemistry 30. Note: BIOL 107 is not a prerequisite for BIOL 108. BIOL 107 and 108 can be taken in either term.
Examines the major lineages of life on Earth. Overview of evolutionary principles and classification, the history of life, and the key adaptations of prokaryotes, protists, fungi, plants, and animals. Laboratories survey the diversity of biological form and function, and introduce students to data collection and scientific writing. Prerequisite: Biology 30. Note: BIOL 107 is not a prerequisite for BIOL 108. BIOL 107 and 108 can be taken in either term.
A structural and functional dissection of a eukaryotic cell. Detection of specific molecules at the ultrastructural level; plasma membrane structure and function; cytoskeleton involvement in intracellular transport, mitosis, and cytokinesis; the endomembrane system, protein targeting, exocytosis and endocytosis; nuclear structure and function; cell cycle control and cancer. Prerequisite: BIOL 107 and a 100-level Chemistry course, or SCI 100. Note: Not to be taken by students with credit in CELL 201, in addition, not available to students currently enrolled in CELL 201.
The chromosomal and molecular basis for the transmission and function of genes. The construction of genetic and physical maps of genes and genomes. Strategies for the isolation of specific genes. Examples of regulatory mechanisms for the expression of the genetic material in both prokaryotes and eukaryotes. Prerequisite: BIOL 107 or SCI 100.
Ecology is the scientific study of interactions between organisms and their environment in a hierarchy of levels of organization: individuals, populations, communities, and ecosystems. Provides a comprehensive survey of general concepts that can stand alone or serve as preparation for advanced courses in ecology. Labs emphasize collection, analysis, and interpretation of data from ecological experiments and field studies to illustrate and complement lecture material. Examples are drawn from a broad range of organisms and systems. Prerequisite: BIOL 108 or SCI 100. Open to students in the BSc Forestry and BSc Forest Business Management program once they have completed REN R 120 and REN R 205.
Discusses the major features of the evolutionary process, including the fossil record, basic population genetics, variation, natural selection, adaptation, and speciation. Prerequisites: BIOL 107 and 108, or SCI 100. Credit cannot be obtained for both BIOL 221 and 321.
An introduction to the process of scientific research including the different approaches to research within biology, formulating research questions, hands-on skill development, experimental design, data collection and analysis, critical thinking, communication of findings, ethics, and career opportunities. Students will attend lectures and selected seminars, and participate in biological research under the supervision of an academic staff member in the Department of Biological Sciences. Open to undergraduate students in the Faculty of Science with preference given to students in Honors and Specialization Programs in the Department of Biological Sciences, and BSc General students (Biological Sciences major). Consent of Department of Biological Sciences required. All students must apply for admission. Prerequisite: BIOL 107 or 108 or SCI 100. See the Biological Sciences website for more details at www.biology.ualberta.ca/courses.
A credit/no-credit course designed to give students a hands-on introduction to research under the supervision of an academic member of the Department of Biological Sciences. Recommended for students who have completed a minimum of 30 units but not more than 60 units in a program in the Faculty of Science. Prerequisites: Minimum GPA of 2.3, credit in BIOL 107 or 108 and/or consent of the Department of Biological Sciences. Credit may be obtained twice.
Biological aging is a complex process that involves the progressive deterioration of an organism over time. This course covers the aging process at the molecular, tissue and organismal levels. Topics for discussion include assessment of animal models of aging, mechanisms of aging, healthy aging, age-associated disease and interventions. Prerequisites: BIOL 201 or ZOOL 241 or 242. Credit cannot be obtained for both BIOL 310 and 510.
An outline of the scientific foundations of biological discovery. Students must have a sophisticated understanding of modern concepts in biology, be prepared to write a major essay on a focused topic, deliver an oral presentation and participate actively in class discussion. Prerequisite: a third-year course in the biological sciences. Offered in alternate years.
The diversity of microscopic life forms, both prokaryotic (bacteria and archaea) and eukaryotic (protists, fungi, phytoplankton), will be explored. The evolutionary forces responsible for this diversity will be described in detail and contrasted to those at work in macroscopic eukaryotes. Students will learn about the molecular methods used to identify and classify both culturable and non-culturable microbes, and genetically characterize entire populations. Prerequisites: BIOL 107 and 108 or SCI 100, and a 200-level Biological Sciences course. MICRB 265 recommended.
Expands on prior introductions to the scientific method and examines the steps involved in the planning, collection, organization, analysis and presentation of biological data. Classes will explore the types of data used to answer a variety of biological questions and will review several different sampling designs, assess the benefits and limitations of various data types for scientific inference, and integrate the statistical methods that are common to other introductory courses. Labs will teach students how spreadsheets and relational databases can be used to manipulate, analyze, and present the results of scientific research. Prerequisites: BIOL 208 and STAT 151 or SCI 151.
Principles of community ecology, applied to plants and animals. The nature of communities, functional groups and rarity; niche theory and competition; disturbance and other alternatives to competition; food webs (predation, herbivory and disease); diversity (determinants, functional consequences and gradients); island communities. Prerequisites: BIOL 208; STAT 151 or SCI 151; and any one of MATH 113, 114, 115, 120, 125 or SCI 100. May not be taken for credit if credit already obtained in ZOOL 332.
The course includes an introduction to the hydrology, biogeochemistry and ecology of wetland ecosystems. Topics covered include classification, geomorphic setting, distribution, functions and ecosystem services of wetlands. Human use, alteration and management of wetlands are examined. An emphasis is placed on wetlands and wetland management in Western Canada, including boreal peatlands and prairie marshes. A full day field trip on a Saturday is required. Prerequisite: one of BIOL 208, REN R 250, or EAS 201. Credit may be obtained in only one of BIOL 333 and REN R 333. This course requires payment of additional student instructional support fees. Refer to the Tuition and Fees page in the University Regulations section of the Calendar.
An introduction to the principles, methods, and applications of biological systematics, including reconstruction of phylogenies, creation of classifications, historical biogeography, and applications in evolutionary biology. Each student will analyze phylogenetic data and write a description of a species and its relationships. Prerequisite: BIOL 108 or SCI 100 and a 200-level Biological Sciences course; BIOL 221 strongly recommended.
An overview of the adverse effects of chemicals or physical agents on biological systems in an ecological context. This course takes a multidisciplinary approach to understanding biological effects and their assessment. Prerequisites: BIOL 208; ZOOL 241 or PHYSL 210 or 212 or 214; and CHEM 261.
Critical discussion and use of techniques for characterizing macromolecules from prokaryotic and eukaryotic systems. This course provides the theoretical and hands-on experience required to use classic and cutting-edge technologies to characterize the properties of these macromolecules. Prerequisite: BIOL 207, BIOL 391, and BIOCH 200, or consent of Department. Credit can only be obtained for one of BIOL 343 or 543 or MICRB 343 or 345.
An introduction to marine science and marine biology including history of marine exploration, essential features of the physical marine environment, a survey of major marine communities and adaptations of the organisms that live in each, overviews of selected groups of marine organisms (e.g., marine mammals), and human impact on the oceans. Recommended as preparation for courses offered through the Bamfield Marine Station (see courses listed under MA SC). Prerequisite: ZOOL 250 or BIOL 208.
An introduction to the ecology of freshwater ecosystems. Lectures will examine the roles of biota in ecological patterns and processes in lakes, ponds, rivers, and streams, emphasizing north-temperate and boreal regions. Seminars will focus on recent papers from the primary literature. Designed to stand-alone or to provide a biological complement to BIOL 464. Prerequisite: BIOL 208.
A practical course introducing students to techniques used in the field and lab to biomonitor lakes and streams. Topics covered will include plankton production and composition, fish and benthos community structure, herbivory and predation, and paleolimnology. The laboratory component includes field trips and independent research projects. Pre or corequisite: BIOL 364 or permission of instructor.
Examines the ecology of boreal and arctic ecosystems, including postglacial history, climate, geology, nutrient cycling and energy flow in forests, wetlands, lakes and marine systems, animal and plant adaptations to cold and current human impacts. Prerequisite: BIOL 208. Credit cannot be obtained for BIOL 366 and any of the following courses: REN R 365, 463, 466.
This course introduces the principles of conservation biology with an emphasis on ecological processes operating at population, community and ecosystem levels of organization. Threats to biological diversity, ranging from species introductions to habitat destruction will be discussed along with conservation solutions ranging from the design of protected areas through conservation legislation. Prerequisite: BIOL 208. Credit cannot be obtained in both BIOL 367 and REN R 364.
Application of molecular biology to the study of systematics, structure of natural populations, mating systems, and forensics. Among the topics discussed are molecular techniques used to detect genetic variation in natural populations, methods to construct phylogenies using molecular data, mathematical models of population structure, paternity analysis, and DNA fingerprinting. Prerequisite: BIOL 207. BIOL 221 recommended.
This course examines how humankind's collective activities, including altering the climate, have significantly affected the natural planetary balance. We will discuss human population growth and unsustainable resource use; the movement of pollutants through the atmosphere, hydrosphere and biosphere; the impacts these stressors have on ecosystem services and human health; and how certain impacts have been and can be mitigated by environmental policies and laws. Prerequisite: BIOL 208.
Ecological impacts of climate change and large-scale human activities on terrestrial and aquatic ecosystems. The focus of this course is to learn to write brief technical summaries of current environment issues, in a fashion that can be understood by an educated citizen. Topics such as climate change, water management projects, invasion of exotic species and national parks management are presented as the forum to evaluate options, trade-offs and solutions to environmental social issues. Prerequisites: BIOL 208; BOT 205 recommended.
A review of the scientific literature on a biological topic, done under the supervision of an academic member of the Department of Biological Sciences. A co-supervisor, who may be outside the Department, may be involved at the supervisor's discretion. Completion of this course requires a written report on the information gleaned from the literature. Prerequisites: A 200-level Biological Sciences course, and consent of Department.
A laboratory course introducing students to techniques in gene manipulation, protein expression and bioinformatics by following a gene through a thematic series of molecular manipulations. Prerequisites: BIOL 207 and BIOCH 200 or consent of Department. Not to be taken by students currently enrolled in GENET 420 or with credit in GENET 420. Credit can be obtained for only one of BIOL 391, IMIN 391 or MMI 391.
A laboratory course introducing students to current molecular biology techniques and associated analyses used to study population genetics, systematics, and evolutionary biology in natural populations. Students will develop microsatellite marker systems and use them to examine the genetic structure of a natural population. A comparative bioinformatic approach will be used to generate sequence data to investigate the use of single nucleotide polymorphisms in candidate gene analysis and in phylogenetic inference. Prerequisite: BIOL 207 and BIOL 208. Corequisite: BIOL 380. Note: BIOL 392 and 592 cannot both be taken for credit.
Starting: 2025-09-01 BIOL 392 - Laboratory Techniques in Molecular Ecology and Systematics
A laboratory course introducing students to current molecular biology techniques and associated analyses used to study population genetics, systematics, and evolutionary biology in natural populations. Students will develop microsatellite marker systems and use them to examine the genetic structure of a natural population. A comparative bioinformatic approach will be used to generate sequence data to investigate the use of single nucleotide polymorphisms in candidate gene analysis and in phylogenetic inference. Prerequisite: BIOL 207 and BIOL 208. Co- or Pre-requisite: BIOL 380. Note: BIOL 392 and 592 cannot both be taken for credit.
Covers special topics of current interest in biology pertaining specifically to field opportunities. This course may be held outside of Edmonton at one or more off-campus locations either domestically or internationally, and may require additional on-campus coursework. This course requires payment of additional miscellaneous fees. Refer to the Tuition and Fees page in the University Regulations section of the Calendar. See departmental website for BIOL 395 offered sections. Prerequisite: second year Biological Sciences course and permission of instructor. Credit for this course may be obtained more than once.
Directed research done under the supervision of an academic member of the Department of Biological Sciences. Normally for students in their third year of study. Successful completion of this course requires a written report on the research project. Prerequisites: A 200-level Biological Sciences course and consent of the Associate Chair, Undergraduate Studies. Credit for this course may be obtained only once.
Directed research done under the supervision of an academic member of the Department of Biological Sciences. Normally for students in their third year of study. Successful completion of this course requires a written report on the research project. Prerequisites: A 200-level Biological Sciences course and consent of the Associate Chair, Undergraduate Studies. Credit for this course may be obtained only once.
Directed research done under the supervision of an academic member of the Department of Biological Sciences. Normally for students in their third year of study. Successful completion of this course requires a written report on the research project. Prerequisites: A 200-level Biological Sciences course and consent of the Associate Chair, Undergraduate Studies. Credit for this course may be obtained only once.
This course will use a combination of approaches to evaluate the origins and modern usage of foundational ideas and studies in ecology. Topics may include diversity gradients, niche theory, life-histories & strategies, multi-trophic networks and ecological stability. Prerequisites: BIOL 208 and 6 units from Ecology, Evolution and Environmental Biology List C. Credit cannot be obtained for both BIOL 408 and BIOL 508.
This course will examine the biology of zoonotic agents and the implication of host-pathogen interactions to disease susceptibility and resistance. Students will apply these basic concepts towards the understanding of issues governing pathogenesis, pathology, epidemiology, control and surveillance of zoonotic diseases. Focus will be placed on zoonotic agents currently having a significant impact on animal and public health. Lectures will be followed by active discussion of selected readings. Prerequisites: one of IMIN 200, ZOOL 352, ZOOL 354, or ENT 392. Credit cannot be obtained for both BIOL 409 and BIOL 509.
This course surveys the application of genomic approaches to problems of ecology and organismal evolution. It combines explanation of methodological and conceptual approaches with presentation and discussion of case studies. Topics include adaptation, speciation, genome evolution, metagenomics, population genomics, and functional genomics. Prerequisites: BIOL 207, 208, and 221. Credit cannot be obtained for both BIOL 411 and BIOL 511.
Methods for inferring evolutionary trees and their applications to the fields of comparative biology, molecular evolution, and systematics. Topics to be covered include phylogenetic inference, molecular evolution integrated at the organismal and population level, and evolutionary developmental genetics. Labs emphasize practical experience in data analysis. Prerequisite: BIOL 335 or consent of Department. BIOL 380 or 392 recommended. Credit cannot be obtained for both BIOL 421 and BIOL 521. Offered in alternate years.
Emphasis is on the design of experiments and analysis of data collected from field and laboratory studies in Biology. Prerequisites: STAT 151 or 161 or SCI 151, BIOL 330, and an additional 300-level Biological Sciences course; or consent of Department. Credit can be obtained in only one of BIOL 430, 530 and REN R 480.
Starting: 2025-09-01 BIOL 430 - Statistical Design and Analysis in Biology
Familiarizes the student with the practical aspects of statistical design in biology, the analysis of experimental and survey data, and interpretation of statistical results. Lectures emphasize the rationale for choosing statistical tests and an understanding of their mathematical foundation and framework. Labs and assignments provide hands-on training in data analysis with the R programming language and in the interpretation of software outputs, and stress critical thinking and scientific communication. Prerequisites: STAT 141 or 151 or SCI 151, BIOL 330, and a 300-level Biological Sciences course. Credit cannot be obtained for BIOL 430 and BIOL 530 or REN R 480.
Principles of population ecology as they apply to plants and animals; population consequences of variation among individuals; habitat structure and population structure; habitat selection and foraging theory; life tables, demography, and the evolution of life history patterns; population dynamics; interactions among organisms (predation, competition, mutualism, parasites/disease); harvesting; and population regulation. Prerequisites: BIOL 208; BIOL 330; one of MATH 114, 125, 134, 144, or 154; STAT 151 or 161.
Starting: 2025-09-01 BIOL 431 - Population Ecology
Principles of population ecology as they apply to plants and animals; population consequences of variation among individuals; habitat structure and population structure; habitat selection and foraging theory; life tables, demography, and the evolution of life history patterns; population dynamics; interactions among organisms (predation, competition, mutualism, parasites/disease); harvesting; and population regulation. Prerequisites: BIOL 208; BIOL 330; one of MATH 114, 125, 134, 144, or 154; STAT 151 or 161. This course may not be taken for credit if credit has already been obtained in BIOL 331.
Design, execution, analysis, and presentation of problems in behavioral, population, and community ecology in a field environment. Field exercises, demonstration of techniques, and data collection for independent projects will take place during the two weeks preceding the Fall term at a field station off the main campus. Final reports are due in the last week of September. Prerequisites: BIOL 331 or 332 or ZOOL 371 or BOT 332; a statistics course such as STAT 151 or SCI 151, BIOL 330 or 430. This course requires payment of additional miscellaneous fees. Refer to the Tuition and Fees page in the University Regulations section of the Calendar.
Plants and animals are engaged in a diversity of ecological interactions, with implications for evolutionary trajectories, species coexistence, and the delivery of ecosystem services. This course requires active engagement, which may include discussion and debate. Lecture content will include a diversity of advanced topics in ecology and evolutionary biology with a focus on species interactions. Prerequisite: BIOL 331 or 332 or BOT 332 or ZOOL 371.
An introduction to the broad field of Chemical Ecology through survey, discussion and analysis of current and historical literature. Topics include a wide array of chemically-mediated ecological interactions in a variety of taxa. Studies that analyze the importance of the use of chemical signals for habitat selection, resource acquisition, reproduction, defense and social interactions are discussed. Students research topics in Chemical Ecology and present their findings in oral and written formats. Prerequisite: BIOL 208. CHEM 164 or 261 recommended. Credit cannot be obtained for both BIOL 434 and 534. Offered in alternate years.
The course will introduce students to theory and techniques employed in the analysis of physical, hydrological, chemical, and ecological properties of ecosystems using a watershed (catchment) approach. Focus will be on landscape interactions or linkages between upland, wetland/riparian, and surface-water in the study of the natural ecohydrologic function and response to disturbance of watershed ecosystems. Emphasis will be placed on Boreal Alberta. Topics are covered through reading the literature and group discussions. Prerequisite: One of BIOL 333, 340, 364, EAS 223, REN R 350, or consent of the Department. Credit cannot be obtained for both BIOL 440 and 540.
Starting: 2025-09-01 BIOL 440 - Watershed Ecohydrology
The course will introduce students to theory and techniques employed in the analysis of physical, hydrological, chemical, and ecological properties of ecosystems using a watershed (catchment) approach. Focus will be on landscape interactions or linkages between upland, wetland/riparian, and surface-water in the study of the natural ecohydrologic function and response to disturbance of watershed ecosystems. Emphasis will be placed on Boreal Alberta. Topics are covered through reading the literature and group discussions. Prerequisite: one of BIOL 333, BIOL 340, BIOL 364, EAS 223 or REN R 350, or consent of the Department. Credit cannot be obtained for both BIOL 440 and 540.
This course explores the intersecting biological, chemical, and geological processes and reactions governing the cycling of elements that control our environment. Course discussions will include consideration of the atmosphere, lithosphere, hydrosphere and biosphere, and will be framed by our understanding that elemental cycling on Earth is fundamentally altered by organisms. Coursework will incorporate current topics in anthropogenic alteration of the natural cycles critical for organismal and planetary function. Prerequisites: CHEM 101 and BIOL 208. Credit cannot be obtained for both BIOL 442 and 542.